A Novel Non-Metal Oxygen Reduction Electrocatalyst Based on Platelet Carbon Nanofiber

Article Preview

Abstract:

A novel non-metal electrocatalyst based on platelet carbon nanofiber (p-CNF) is prepared, and a palladium electrocatalyst supported on activated carbon (AC) is also synthesized. The physico-chemistry properties of the p-CNF and palladium catalyst on AC (Pd/AC) are investigated by high resolution transmission electron microscopy, N2 physisorption and Raman spectra analysis. From cyclic voltammetric studies, it is found that p-CNF is more active than Pd/AC in acidic media. The p-CNF shows a more positive oxygen reduction reaction (ORR) onset reduction potential and a higher oxygen reduction current density than Pd/AC. Moreover, the ORR is controlled by a surface reaction process when Pd/AC is used, while it becomes diffusion controlled when p-CNF is used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-270

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Holze and W. Vielstich: J. Electrochem. Soc. Vol. 131 (1984), p.2298.

Google Scholar

[2] C.W. Walton, E.J. Rudd. in: Energy and electrochemical processing for a cleaner environment (The Electrochemical Society, Pennington, NJ, 1997).

Google Scholar

[3] H. Arai, S. Muller and O. Haas: J. Electrochem. Soc. Vol. 147 (2000) 3584.

Google Scholar

[4] N. Jia, R.B. Martin, Z. Qi, M.C. Lefebvre and P.G. Pickup: Electrochim. Acta Vol. 46 (2001), p.2863.

Google Scholar

[5] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa and J. Nakamura: Vol. Chem. Commun. 301(2004), p.840.

DOI: 10.1039/b400607k

Google Scholar

[6] N. Phougat, P. Vasudevan, J. Power Sources 69 (1997) 161.

Google Scholar

[7] T. Yano, E. Popa, D.A. Tryk, K. Hashimoto and A. Fujishima: J. Electrochem. Soc. Vol. 146 (1999), p.1081.

Google Scholar

[8] J.I. Ozaki, K. Nozawa, K. Yamada, Y. Uchitama, Y. Yoshimoto, A. Furuichi, T. Yokoyama, A. Oya, L.J. Brown and J.D. Cashion: J. Appl. Electrochem. Vol. 36 (2006), p.239.

DOI: 10.1007/s10800-005-9054-2

Google Scholar

[9] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[10] P.J. Britto, S. Kalathur, V. Santhanam, A. Rubio, J.A. Alonso and P.M. Ajayan: Adv. Mater. Vol. 11 (1999), p.154.

Google Scholar

[11] H. Dai: Surf. Sci. Vol. 500 (2002), p.218.

Google Scholar

[12] J.S. Zheng, X.S. Zhang, P. Li, J. Zhu, X.G. Zhou and W.K. Yuan: Vol. Electrochem. Commun. 9 (2007), p.895.

Google Scholar

[13] T.J. Zhao, Ph.D. Thesis, East China University of Science and Technology, (2004).

Google Scholar

[14] Y. Lin, X. Cui and X. Ye : J. Phys. Chem. B Vol. 109 (2005), p.14410.

Google Scholar

[15] E. Yeager: J. Mol. Cat. Vol. 38 (1986), p.5.

Google Scholar

[16] A.J. Appleby: J. Electroanal. Chem. Vol. 357 (1993), p.117.

Google Scholar