Synthesis Optimization of SAPO-34 in the Presence of Mixed Template for MTO Process

Article Preview

Abstract:

A series of SAPO-34 materials were synthesized hydrothermally in the presence of mixed templating agent (named TEDE) of tetraethyl ammonium hydroxide (TEAOH) and diethylamine (DEA). The effects of template amount, SiO2/Al2O3 and P2O5/Al2O3 molar ratios and the crystallization temperature on the structure and acidity were studied by XRD, nitrogen adsorption and NH3-TPD techniques. The results showed that SAPO-34 and SAPO-5 are competing phases at low template concentration. Pure SAPO-34 with high crystallinity and large BET surface area were obtained at a TEDE/Al2O3 ratio of 2.0. Varying the SiO2/Al2O3 ratio at 0.1~1.0 did not change the purity of SAPO-34, but affected its crystallinity and acidity. An optimal synthesis procedure giving a homogeneous SAPO-34 framework with high crystallinity, consists of heating a gel of composition Al2O3:P2O5:0.6SiO2:1.0TEAOH:1.0DEA:53H2O at 100 °C for 24h firstly and 200 °C for 72h later. Such a reproducible procedure gave rise to an acidic catalyst active in the MTO reactions with 100% methanol conversion, 85.2% ethylene and propylene selectivity and a longest lifetime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

246-256

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.C. Patcas: J. Catal. Vol. 231 (2005), pp.194-200.

Google Scholar

[2] M. Stöcker: Micropor. Mesopor. Mat. Vol. 29 (1999), pp.3-48.

Google Scholar

[3] G. Sastre, D.W. Lewis, C.R.A. Catlow: J. Phys. Chem. B Vol. 101 (1997), pp.5249-5262.

Google Scholar

[4] R. Vomscheld, M. Briend, M. J. Peltre, P. P. Man, D. Barthomeuf: J. Phy. Chem. Vol. 98 (1994), pp.9614-9618.

Google Scholar

[5] G.Y. Liu, P. Tian, J.Z. Li, D.Z. Zhang, F. Zhou, Z.M. Liu: Micropor. Mesopor. Mat. Vol. 111 (2008), pp.143-149.

Google Scholar

[6] J.P. Lourenco, M.F. Ribeiro, F.R. Ribeiro, J. Rocha, Z. Gabelica: Stud. Surf. Sci. Catal. Vol. 84 (1994), pp.867-874.

Google Scholar

[7] Y.J. Lee, S.C. Baek, K.W. Jun: Appl. Catal. A: Gen. Vol. 329 (2007), pp.130-136.

Google Scholar

[8] P. Liu, T. Ren, Y.H. Sun: Micropor. Mesopor. Mat. Vol. 114 (2008), pp.365-372.

Google Scholar

[9] S. Kvisle, R. Wendelbo, H. Ren, U.S. Patent 5, 663, 471. (1994).

Google Scholar

[10] M. Popova, C. Minchev, V. Kanazirev: Appl. Catal. A: Gen. Vol. 169 (1998), pp.227-235.

Google Scholar

[11] M. Mertens, K.G. Strohmaier, European Patent, EP1, 451, 105. (2004).

Google Scholar

[12] C.Q. He, Z.M. Liu, G.Y. Cai, L.X. Yang, Z.Z. Wang, J.S. Luo, X.S. Pan, Z.Q. Jiang, Y.J. Chang, R.M. Shi, CN Patent 1, 096, 496. (1994).

Google Scholar

[13] G.Y. Liu, P. Tian, Y. Zhang, J.Z. Liu, L. Xu, S.H. Meng, Z.M. Liu: Micropor. Mesopor. Mat. Vol. 114 (2008), pp.416-423.

Google Scholar

[14] L.P. Ye, F.H. Cao, W.Y. Ying, D.Y. Fang, Q.W. Sun: submitted to Journal of Porous Material (2009).

Google Scholar

[15] T.C. Xiao, L.D. An, H.L. Wang: Appl. Catal. A: Gen. Vol. 130 (1995), pp.187-194.

Google Scholar

[16] E. Dumitriu, A. Azzouz, V. Hulea, D. Lutic, H. Kessler: Micropo. Mater. Vol. 10 (1997), pp.1-12.

Google Scholar

[17] S.H. Jhung, J.S. Chang, J.S. Hwang, S.E. Park: Micropor. Mesopor. Mater. Vol. 64 (2003), pp.33-39.

Google Scholar

[18] A. Izadbakhsh, F. Farhadi,F. Khorasheh. S. Sahebdelfar: Appl. Catal. A: Gen. (2009), accepted.

Google Scholar

[19] L. Xu, A.P. Du, Y.X. Wei, Y.L. Wang, Z.X. Yu, Y.L. He, X.Z. Zhang, Z.M. Liu: Micropor. Mesopor. Mat. Vol. 115 (2008), pp.332-337.

Google Scholar

[20] B.M. Lok, C.A. Messina, R.L. Patton, R.T. Gajek, T.R. Cannan, E.M. Flanigen: J. Am. Chem. Soc. Vol. 106 (1984), pp.6092-6093.

DOI: 10.1021/ja00332a063

Google Scholar

[21] S. Wilson, P. Barger: Micropor. Mesopor. Mater. Vol. 29 (1999), pp.117-126.

Google Scholar

[22] Ø.B. Vistad, D.E. Akporiaye, K.P. Lillerud: J. Phys. Chem. B Vol. 105 (2001), pp.12437-12447.

Google Scholar