Observation on the Structure of Ordered Mesoporous Materials at High Temperature via In Situ X-Ray Diffraction

Article Preview

Abstract:

This short paper reports the direct observation of the structure variation of mesoporous silica at temperatures higher than 600 oC by use of an in situ XRD technique. The mesostructure of SBA-15 or other mesoporous materials such as MCM-41 became almost invisible when the temperature rose to above 600 oC, but recovered or partially recovered once the temperature decreased. Contrarily, the characteristic XRD patterns of zeolites such as ZSM-5 kept unchangeable under the same conditions. On the basis of comparative experiments performed on various mesoporous samples, it is inferred that the reversible variation of XRD patterns probably originates from the thermal shock of the pore wall, not from the permanent collapse of the mesoscopic structure in these samples. This observation indicates the special features of SBA-15 at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-37

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Kónya, V. F. Puntes, I. Kiricsi, J. Zhu, A. P. Alivisatos and G. A. Somorjai: Nano Lett., 2 (2002), p.907.

DOI: 10.1021/nl0256661

Google Scholar

[2] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stuky: Science 279 (1998), p.548.

Google Scholar

[3] P. Shah and V. Ramasvamy: Micropr. Mesopr. Mater. 114 (2008), p.270.

Google Scholar

[4] F. Kleitz, S. H. Choi and R. Ryoo: Chem. Comm. (2003), p.2136.

Google Scholar

[5] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck: Nature 359 (1992), p.710.

Google Scholar

[6] P. T. Tanev and T. J. Pinnavaia: Chem. Mater. 8 (1996), p.2068.

Google Scholar

[7] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki: J. Am. Chem. Soc. 122 (2000), p.10712.

DOI: 10.1021/ja002261e

Google Scholar

[8] D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky: J. Am. Chem. Soc. 120 (1998), p.6024.

Google Scholar

[9] C. F. Zhou, Y. M. Wang, J.H. Xu, T. T. Zhuang, Y. Wang, Z.Y. Wu and J. H. Zhu: Stud. Surf. Sci. Catal. 156 (2005), p.907.

Google Scholar

[10] Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao: Angew. Chem., Int. Ed. 40 (2001), p.1258.

Google Scholar

[11] F. Q. Zhang, Y. Yan, H. Yang, Y. Meng, C. Yu, B. Tu and D. Zhao: J. Phys. Chem. B, 109 (2005), p.8723.

Google Scholar

[12] H. G. Karge and J. Weitkamp: Molecular Sieves - Science and Technology Vol. 2: p.141, Springer, (1999).

Google Scholar

[13] H. P. Lin and C. Y. Mou: Acc. Chem. Res. 35 (2002), p.927.

Google Scholar

[14] H. Landmesser , H. Kosshck, W. Storek and R. Fricke: Solid State lonics (101) 1997, p.271.

Google Scholar

[15] R. Jenkms and R.L. Snyder: Introduction to X-ray Power Diffractometry, New York: John Wiley & Sons. Inc., (1996).

Google Scholar

[16] L. A. Villaescusa, P. Lightfoot, S. J. Teat and R. E. Morris: J. Am. Chem. Soc. 123 (2001), p.5453.

Google Scholar

[17] A.T. Bell: Science 299 (2003), p.1688.

Google Scholar