Local Strain Hardening of Metal Components by Means of Martensite Generation

Article Preview

Abstract:

The emphasis, in respect of content regarding the here presented project, lies within the production of localized reinforcements, by means of transformation-induced α’ martensite formation in solid and sheet metal components. During the forming process of metastable austenitic steels, high-strength martensite areas, next to ductile austenitic regions, are to be adjusted to enable the production of load-adapted components. To this end, extensive basic analyses are also necessary in order to determine the description of the mechanical behavior of α’-martensite structures, as well as to determine the extension of the numerical simulation as regards the structural change. The results achieved within the area of steel forming include the development of a temperable deep-drawing die (T = -35 °C until T = 100 °C) that carefully facilitates structural conversion at a constant forming-degree. Moreover the crash performance, based on transformation-induced martensite structures is improved. So-called Forming Curves (FCs) were developed as a new approach towards the material characterization of structured steel. In bulge forming components, comprised of chrome and nickel steels as well as manganous hard steel, martensite was specifically generated under the use of differing forming parameters. The tool design was aided by Finite Element Analysis (FEA). Moreover, fundamental simulations were carried out in order to calculate the structural change. The modification and extension of a semi-analytical model of the material followed so that the martensite content could be calculated in the previously examined sheet components, as in the massive forming.

You have full access to the following eBook

Info:

[1] T. Angel: Formation of Martensite in Austenitic Stainless Steels. Journal of the Iron and Steel Institute, Mai 1954, pp.165-174, (1954).

Google Scholar

[2] A. Bäumer: Verfestigungsverhalten von hochmanganhaltigen Stählen mit TWIP-Effekt, Dissertation, RWTH Aachen, (2009).

Google Scholar

[3] E. Doege, B. -A. Behrens: Handbuch Umformtechnik, Springer Verlag Berlin Heidelberg New York, (2006).

Google Scholar

[4] B. -A. Behrens, C. Sunderkötter, S. Hübner, J. Knigge, K. Weilandt, K. Voges-Schwieger: Local Strain Hardening of Sheet and Solid Forming Components during Formation of Martensite in Metastable Austenitic Steels. Advanced Materials Research Vol. 22, pp.5-15, http: /www. scientific. net, Trans Tech Publications, Switzerland, (2007).

DOI: 10.4028/www.scientific.net/amr.22.5

Google Scholar

[5] B. -A. Behrens, K. Voges-Schwieger, S. Hübner: Non-Destructive Testing for the Determination of Transformation-Induced Martensite in Metastable Austenitic Steels. Proceedings of the IDDRG Forming the Future- Innovations in Sheet Metal Forming, 21. -23. May 2007, Györ, Hungary, pp.93-100, (2007).

DOI: 10.4028/www.scientific.net/amr.22.5

Google Scholar

[6] B. -A. Behrens, S. Hübner, K. Voges-Schwieger, K. Weilandt: Local Strain Hardening of Sheet Forming Components during Formation of Martensite in Metastable Austenitic Steels. European Congress on Advanced Materials and Processes (EUROMAT), Nürnberg, (2007).

DOI: 10.4028/www.scientific.net/amr.22.5

Google Scholar

[7] B. -A. Behrens, S. Hübner, J. Knigge, K. Voges-Schwieger, K. Weilandt: Gezielte Funktionalisierung von Martensit in Blech- und Schmiedebauteilen. 6. Industriekolloquium Clausthal Hochfeste Strukturen, 19. -20. Nov. 2007, Clausthal-Zellerfeld, pp.191-197, (2007).

Google Scholar

[8] B. -A. Behrens, K. Weilandt, B. Springub; Verformungsinduzierter alpha'-Martensit- Anwendungsgebiete und numerische Abbildung, Festkolloquium Pawelski, Steel Grips, Verlag GRIPS media GmbH, Bad Harzburg, pp.165-177, (2008).

Google Scholar

[9] B. -A. Behrens, A. Bouguecha, A. Hundertmark, O. Marthiens, F. Schäfer, K. Voges-Schwieger, K. Weilandt: Aktuelle Forschungsergebnisse am Institut für Umformtechnik und Umformmaschinen. Tagungsbeitrag 19. Umformtechnisches Kolloquium Hannover 2008 Umformtechnik - ein Wirtschaftszweig mit Potential, Hrsg: B. -A. Behrens, ISBN 978-3-00-023874-1, pp.47-70, (2008).

Google Scholar

[10] B. -A. Behrens, S. Hübner, J. Knigge, K. Voges-Schwieger, K. Weilandt: Local StrainHardening in Sheet Metal and Forging Components, Steel research int., Volume 2008, No. 3, pp.165-171, (2008).

DOI: 10.1002/srin.200806335

Google Scholar

[11] B. -A. Behrens, S. Hübner, K. Weilandt, K. Voges-Schwieger.: Local martensitic high-strength structure fields - material properties of metastable austenitic steel. Proceedings of the 6th European Stainless Steel Conference Science and Market, 10. -13. June 2008, Helsinki, Finland, pp.799-804, (2008).

DOI: 10.1002/srin.200806335

Google Scholar

[12] B. -A. Behrens, S. Hübner, K. Voges-Schwieger: Local martensite evolution in metastable austenitic steels - new material for a changing world. Proceedings of the IDDRG Best in Class Stamping, 16. -18. June 2008, Olofström, Schweden, pp.231-237, (2008).

Google Scholar

[13] S. Hübner, et al.: Bauteile mit lokal spezifischen Eigenschaften sichern Festigkeit bei niedrigem Materialeinsatz, MM Maschinen Markt, Ausgabe 44, ISSN0341-5775, Oktober (2009), pp.26-29.

Google Scholar

[14] S.V. Huck, R. Kawalla: Bedingungen für die Verbesserung der Verformbarkeit hochfester Stähle bei der Blechumformung, Metallurg (2008), Heft 3, pp.45-48.

Google Scholar

[15] S. Kranz, J. Ohlert, K. Papamantellos, W. Bleck: Umwandlungsverhalten und mechanischtechnologische Eigenschaften niedrig und hochlegierter TRIP-Stähle. Aachener Stahlkolloquium 1999, pp.107-115, (1999).

Google Scholar

[16] H. -U. Lindenberg, O. Kazmierski, A. Otto: Kaltgewalztes Band aus nichtrostenden Edelstählen und die Anwendungspotentiale. Stahl und Eisen, Heft 5, pp.37-42, (2000).

Google Scholar

[17] N.N.: http: /tu-freiberg. de/ze/sfb799/index. html, Offizielle Website des Sonderforschungsbereichs 799 der TU Bergakademie Freiberg, (2009).

Google Scholar

[18] E.J. Pavlina, C.J. Van Tyne: Correlation of Yield Strength and Tensile Strength with Hardness for Steels. Journal of Material Engineering and Performance, Vol. 17 (6), pp.888-893, (2008).

DOI: 10.1007/s11665-008-9225-5

Google Scholar

[19] E. Ratte: Sense and Sensitivity of thermo-mechanical forming simulation of metastable austenitic steels. Proceedings of the 6th European Stainless Steel Conference Science and Market, Helsinki, Finland, pp.787-792, (2008).

Google Scholar

[20] W. Schmidt, W. Küppers: Der Einfluß der Austenit-Stabilität auf mechanische Eigenschaften und Umformverhalten von Chrom-Nickel-Stählen. Thyssen Edelstahl, Technische Berichte 12. Band 1986 Heft 1, pp.80-100, (1986).

Google Scholar

[21] M. Smaga,: Experimentelle Untersuchung der Mikrostruktur sowie des Verformungs- und Umwandlungsverhaltens zyklisch beanspruchter metastabiler austenitischer Stähle. Kaiserslautern, Diss., (2008).

Google Scholar

[22] B. Springub: Semi-analytische Betrachtung des Tiefziehens rotationssymmetrischer Bauteile unter Berücksichtigung der Martensitevolution, Dissertation, Universität Hannover, (2005).

Google Scholar

[23] J. Talonen: Effect of strain-induced α'-martensite transformation on mechanical properties of metastable austenitic stainless steels. Dissertation, Helsinki University of Technology, (2007).

Google Scholar

[24] T. Tsuta, R. -J. -A. Cortes: Flow Stress and Phase Transformation Analyses in Austenitic Stainless Steel Under Cold Working. Part 2; JSME Inter-national Journal, Serie A, 36. Band, Heft 1, pp.63-72, (1993).

DOI: 10.1299/jsmea1993.36.1_63

Google Scholar

[25] K. Voges-Schwieger, B. -A. Behrens, K. Weilandt, S. Hübner.: Transformation-induced martensite evolution in deep drawing processes - a local generation of material properties for load-adapted components. Proceedings of the 14th International Symposium on Plasticity and its Current Applications Mechanics & Mechanisms of Finite Plastic Deformation, Kona, Hawaii, USA, NEAT PRESS ISBN: 0-9659463-8-X, pp.79-81, (2008).

DOI: 10.4028/www.scientific.net/amr.137.1

Google Scholar

[26] K. Voges-Schwieger, B. -A. Behrens, S. Hübner: Material characterization of local straininduced α'-martensitic reinforcements. Proceedings of The 12th International ESAFORM Conference on Material Forming, University of Twente, The Netherlands, April pp.27-29, (2009).

DOI: 10.1007/s12289-009-0452-6

Google Scholar

[27] K. Voges-Schwieger, B. -A. Behrens, S. Hübner, S.: Strain-Hardening Part of Strain-induced Martensite Formation, Proceedings of the 15th International Symposium on Plasticity Macro- to Nano-scale Inelastic Behavior of Materials: Plasticity, Fatigue and Fracture, 03. -08. 01. 2009 in St. Thomas, U.S. Virgin Islands, NEAT PRESS ISBN: 0-9659463-9-8, pp.139-141.

Google Scholar

[28] K. Voges-Schwieger, B. -A. Behrens, S. Hübner: Enhancing Deep Drawing Processes by Using a Thermomechanical Tool Design, Key Engineering Materials Vols. 410-411 (2009) Sheet Metal 2009, pp.595-600, online at http: /www. scientific. net.

DOI: 10.4028/www.scientific.net/kem.410-411.595

Google Scholar

[29] K. Voges-Schwieger, B. -A. Behrens, S. Hübner: Material characterization of TRIP780 concerning different forming temperatures and differing local true strains, Proceedings of the 16th International Symposium on Plasticity, 03. -08. 01. 2010 in St. Kitts, St. Kitts and Nevis (eingereicht am 01. 09. 2009).

Google Scholar