[1]
T. E. Graedel, K Nassau, J. P: Franey, Copper patinas formed in the atmosphere-I. Introduction, Corros. Sci 27 (1987) 639-657.
DOI: 10.1016/0010-938x(87)90047-3
Google Scholar
[2]
A. Kratschmer, I. Odnevall Wallander, C. Leygraf, The evolution of outdoor copper patina, Corrosion Science 44 (2002) 425-450.
DOI: 10.1016/s0010-938x(01)00081-6
Google Scholar
[3]
J.M. Bastidas, A. Lopez-Delgado, F. A. Lopez, Characterization of artificially patinated layer on artistic bronze exposed to laboratory SO2 contamination, Journal of Materials Science 32 (1997) pp.129-133.
Google Scholar
[4]
K. Nassau, A.E. Miller, T.E. Graedel, The reaction of simulated rain with copper, copper patina, and some copper compounds, Corrosion Science 27 (1987) 703-709.
DOI: 10.1016/0010-938x(87)90052-7
Google Scholar
[5]
T. E. Graedel, Corros. Sci. 45 (2003) 2851.
Google Scholar
[6]
C. Chiavari, K. Rahmouni, H. Takenout, S. Joiret, P. Vermaut, L. Robbiola, Composition and electrochemical properties of natural patinas of outdoor bronze monuments, Electrochimica Acta, 52 (2007) 7760-7769.
DOI: 10.1016/j.electacta.2006.12.053
Google Scholar
[7]
J. H. Payer, Corrosion Processes in the Development of Thin Tarnish Films, Electrical Contacts1990 Proceedings of the Thirty Sixth IEEE Holm Conference on Electrical Contacts meeting jointly with the Fifteenth International Conference on Electrical Contacts, pp.203-211, Piscataway, NJ: IEEE, (1990).
DOI: 10.1109/holm.1990.113014
Google Scholar
[8]
B. I. Rickett and J.H. Payer Composition of Copper tarnish products formed in moist air with trace levels of pollutant gas: sulfur dioxide and sulfur dioxide/nitrogen dioxide J. Electrochemical Soc. Vol 142, N. 11, 1995, 3713-3722].
DOI: 10.1149/1.2048403
Google Scholar
[9]
L. Morselli, E. Bernardi, C. Chiavari, G. Brunoro, Corrosion of 85-5-5-5 bronze in natural and synthetic acid rain, Appl. Phys. A 79 (2004) 363-367.
DOI: 10.1007/s00339-004-2536-y
Google Scholar
[10]
L. Robbiola, C. Fiaud, Apport de l'analyse statistique des produits de corrosion a la comprehension des processus de dégradation des bronzes archéologiques, Revue d'Archeometrie, 16 (1992), 109-119.
DOI: 10.3406/arsci.1992.896
Google Scholar
[11]
E. Bernardi, C. Chiavari, B. Lenza, C. Martini, L. Morselli, F. Ospitali, L. Robbiola The atmospheric corrosion of quaternary bronzes, the leaching action of acid rain, Corrosion Science 51 (2009), pp.159-170.
DOI: 10.1016/j.corsci.2008.10.008
Google Scholar
[12]
I. Ondevall Wallinder, C. Leygraf, A study of copper runoff in an urban atmosphere, Corros. Sci. 39 (1997) 12, 2039-(2052).
DOI: 10.1016/s0010-938x(97)00081-4
Google Scholar
[13]
W. H. J. Vernon, Trans. Faraday Soc. 27 (1931), 255.
Google Scholar
[14]
N. D. Tomashov Theory of Corrosion and protection of metals, B.H. Tytell, Translator, E.C. Greco, Editor, p.125 NACE, Houston, Texas (1972).
Google Scholar
[15]
P.B. P. Phipps and D.W. Rice, in corrosion Chemistry American Chemical Society, Washington DC (1979).
Google Scholar
[16]
S. K. Chawla, J.H. Payer, The Early Stage of Atmospheric Corrosion of Copper by Sulfur Dioxide, J. Electrochem. Soc. 137 (1990) 1 60-64.
DOI: 10.1149/1.2086439
Google Scholar
[17]
D.A. Scott. Copper and Bronze in Art: Corrosion, Colorants, Conservation, The Getty Conservation Institute Los Angeles 2002, 45-46.
Google Scholar
[18]
I. Odnevall and C. Leygraf, J. Electrochem. Soc., 142, 3682, (1995).
Google Scholar