Characterization of Bronze Corrosion Products on Exposition to Sulphur Dioxide

Article Preview

Abstract:

In the main frame of the research aimed to model the corrosion growth on bronze surface, the objective of the work here reported has been to characterize the corrosion products formed on laboratory samples of bronze alloy (Cu Sn12), during the early stage of exposure to moist air with sulfur dioxide. A cycling corrosion cabinet was used to control 200 ppm gas concentration, relative humidity (RH) and temperature, according to the DIN 50018 (Kesternich test).The method is designed to evaluate how well the surface resists to sulfur dioxide corrosion; the test cycle consists of 8 hours exposure to sulfur dioxide at 40°C temperature and 100% relative humidity, followed by 12 hours drying at room condition. Weight variation, Spectrophotometer, Scanning Electron Microscopy with X-ray microanalysis (SEM-EDS), X-ray Diffraction (XRD) analysis were carried out for the tarnish products characterization. Some of the compound identified were brochantite (Cu4(OH)6SO4), chalcanthite (CuSO4•5H2O) cuprite (Cu2O), cassiterite (SnO2) and ottemannite (Sn2O3).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-28

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. E. Graedel, K Nassau, J. P: Franey, Copper patinas formed in the atmosphere-I. Introduction, Corros. Sci 27 (1987) 639-657.

DOI: 10.1016/0010-938x(87)90047-3

Google Scholar

[2] A. Kratschmer, I. Odnevall Wallander, C. Leygraf, The evolution of outdoor copper patina, Corrosion Science 44 (2002) 425-450.

DOI: 10.1016/s0010-938x(01)00081-6

Google Scholar

[3] J.M. Bastidas, A. Lopez-Delgado, F. A. Lopez, Characterization of artificially patinated layer on artistic bronze exposed to laboratory SO2 contamination, Journal of Materials Science 32 (1997) pp.129-133.

Google Scholar

[4] K. Nassau, A.E. Miller, T.E. Graedel, The reaction of simulated rain with copper, copper patina, and some copper compounds, Corrosion Science 27 (1987) 703-709.

DOI: 10.1016/0010-938x(87)90052-7

Google Scholar

[5] T. E. Graedel, Corros. Sci. 45 (2003) 2851.

Google Scholar

[6] C. Chiavari, K. Rahmouni, H. Takenout, S. Joiret, P. Vermaut, L. Robbiola, Composition and electrochemical properties of natural patinas of outdoor bronze monuments, Electrochimica Acta, 52 (2007) 7760-7769.

DOI: 10.1016/j.electacta.2006.12.053

Google Scholar

[7] J. H. Payer, Corrosion Processes in the Development of Thin Tarnish Films, Electrical Contacts1990 Proceedings of the Thirty Sixth IEEE Holm Conference on Electrical Contacts meeting jointly with the Fifteenth International Conference on Electrical Contacts, pp.203-211, Piscataway, NJ: IEEE, (1990).

DOI: 10.1109/holm.1990.113014

Google Scholar

[8] B. I. Rickett and J.H. Payer Composition of Copper tarnish products formed in moist air with trace levels of pollutant gas: sulfur dioxide and sulfur dioxide/nitrogen dioxide J. Electrochemical Soc. Vol 142, N. 11, 1995, 3713-3722].

DOI: 10.1149/1.2048403

Google Scholar

[9] L. Morselli, E. Bernardi, C. Chiavari, G. Brunoro, Corrosion of 85-5-5-5 bronze in natural and synthetic acid rain, Appl. Phys. A 79 (2004) 363-367.

DOI: 10.1007/s00339-004-2536-y

Google Scholar

[10] L. Robbiola, C. Fiaud, Apport de l'analyse statistique des produits de corrosion a la comprehension des processus de dégradation des bronzes archéologiques, Revue d'Archeometrie, 16 (1992), 109-119.

DOI: 10.3406/arsci.1992.896

Google Scholar

[11] E. Bernardi, C. Chiavari, B. Lenza, C. Martini, L. Morselli, F. Ospitali, L. Robbiola The atmospheric corrosion of quaternary bronzes, the leaching action of acid rain, Corrosion Science 51 (2009), pp.159-170.

DOI: 10.1016/j.corsci.2008.10.008

Google Scholar

[12] I. Ondevall Wallinder, C. Leygraf, A study of copper runoff in an urban atmosphere, Corros. Sci. 39 (1997) 12, 2039-(2052).

DOI: 10.1016/s0010-938x(97)00081-4

Google Scholar

[13] W. H. J. Vernon, Trans. Faraday Soc. 27 (1931), 255.

Google Scholar

[14] N. D. Tomashov Theory of Corrosion and protection of metals, B.H. Tytell, Translator, E.C. Greco, Editor, p.125 NACE, Houston, Texas (1972).

Google Scholar

[15] P.B. P. Phipps and D.W. Rice, in corrosion Chemistry American Chemical Society, Washington DC (1979).

Google Scholar

[16] S. K. Chawla, J.H. Payer, The Early Stage of Atmospheric Corrosion of Copper by Sulfur Dioxide, J. Electrochem. Soc. 137 (1990) 1 60-64.

DOI: 10.1149/1.2086439

Google Scholar

[17] D.A. Scott. Copper and Bronze in Art: Corrosion, Colorants, Conservation, The Getty Conservation Institute Los Angeles 2002, 45-46.

Google Scholar

[18] I. Odnevall and C. Leygraf, J. Electrochem. Soc., 142, 3682, (1995).

Google Scholar