Prediction of Morphological Properties of Smart-Coatings for Cr Replacement, Based on Mathematical Modelling

Article Preview

Abstract:

In this paper we present an extension of a mathematical model for the morphological evolution of metal electrodeposits – recently developed by some of the authors – accounting for mass-transport of electroactive species from the bulk of the bath to the cathode surface. The implementation of mass-transport effects is specially necessary for the quantitative rationalisation of electrodeposition processes from ionic liquids, since these electrolytes exhibit a viscosity that is notably higher than that of cognate aqueous solutions and consequently mass-transport control is active at all practically relevant plating rates. In this work we show that, if mass-transport is coupled to cathodic adsorption of ionic liquid species and surface diffusion of adatoms, it can lead to electrodeposit smoothing. This seemingly paradoxical theoretical result has been validated by a series of Mn electrodeposition experiments from aqueous baths and eutectic ionic liquids. The latter solutions have been shown to be able to form remarkably smoother coatings than the former ones. Mn electroplates have been proposed for Cd replacement and their corrosion protection performance seems comparable, but so far the required surface finish quality has not been achieved with aqueous electrolytes. Ionic liquids thus seem to provide a viable approach to aeronautic-grade Mn electroplating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-106

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Bozzini, E. Griskonis, A. Fanigliulo, A. Sulcius: Surf. & Coat. Technol. Vol. 154 (2002) p.294.

Google Scholar

[2] B. Bozzini, E. Griskonis, A. Sulcius, P.L. Cavallotti: Plat. Surf. Fin. Vol. 88 (2001), p.64.

Google Scholar

[3] B. Bozzini: Trans. Inst. Met. Finish. Vol. 78 (2000), p.93.

Google Scholar

[4] B. Bozzini, A. Bund, B. Busson, Ch. Humbert, A. Ispas, C. Mele, A. Tadjeddine: Electrochem. Commun. Vol. 12 (2010), p.56.

Google Scholar

[5] G. Giovannelli, L. D'Urzo, G. Maggiulli, S. Natali, C. Pagliara, I. Sgura and B. Bozzini: J. Solid State Electrochem. Vol. 14 (2010), p.479.

DOI: 10.1007/s10008-009-0912-4

Google Scholar

[6] B. Bozzini, B. Busson, Ch. Humbert, C. Mele, P. Raffa and A. Tadjeddine. An in situ SFG Investigation of Au electrodeposition from the room temperature ionic liquid BMP-TFSA, containing Au(I) cyanocomplex, In preparation.

DOI: 10.1016/j.jelechem.2011.07.004

Google Scholar

[7] B. Bozzini, E. Tondo, A. Bund, A. Ispas, C. Mele. "Electrodeposition of Au from.

Google Scholar

[8] B. Bozzini, D. Lacitignola, I. Sgura: Mathematical Biosciences and Engineering. Vol. 7, N: 2 (2010), p.237.

Google Scholar

[9] B. Bozzini, D. Lacitignola, I. Sgura. Travelling Waves in a Reaction-Diffusion Model for Electrodeposition,: Mathematics and Computers in Simulation. In press.

DOI: 10.1016/j.matcom.2010.10.008

Google Scholar

[10] B. Bozzini, D. Lacitignola, I. Sgura: Journal of Physics: Conference Series Vol. 96 (2008), p.012051.

Google Scholar

[11] J. -K. Chang, C. -H Huang, W. -T. Tsai, M. -J. Deng, I. -W. Sun, P. -Y. Chen: Electrochim. Acta Vol. 53 (2008) p.4447.

Google Scholar

[12] M. -J. Deng, P. -Y. Chen, I. -W. Sun: Electrochim. Acta Vol. 53 (2007), p. (1931).

Google Scholar

[13] P. P Chung, P.A. Cantwell, G.D. Wilcox, G.W. Critchlow: Trans. Inst. Met. Finish. Vol. 86(4) (2008), p.211.

Google Scholar

[14] S. Ruan, C.A. Schuh: Acta Mater. Vol. 57 (2009), p.3810.

Google Scholar

[15] D. -X. Zhuang, M. -J. Deng, P. -Y. Chen, I. -W. Sun: J. Electrochem. Soc. Vol. 155 (2009), p. D575.

Google Scholar

[16] P. -Y. Chen, C.L. Hussey: Electrochim. Acta Vol. 52 (2007), p.1857.

Google Scholar

[17] M. -J. Deng, P. -Y. Chen, T. -I. Leong, I. -W. Sun, J. -K. Chang, W. -T. Tsai: Electrochem. Commun. Vol. 10 (2008), p.213.

Google Scholar

[18] J. -K. Chang, M. -T Lee, C. -W. Cheng, W. -T. Tsai, M. -J. Deng, I. -W. Sun: J. Mater. Chem. Vol. 19 (2009), p.3732.

Google Scholar

[19] Q. Wei, X. Ren, J. Du, S. Wie, S.R. Hu: Minerals Engineering Vol. 23 (2010), p.578.

Google Scholar

[20] P. Díaz-Arista, R. Antaño-López, Y. Meas, R. Ortega, E. Chainet, P. Ozil, G. Trejo: Electrochim. Acta Vol. 51 (2006), p.4393.

DOI: 10.1016/j.electacta.2005.12.019

Google Scholar

[21] P. Díaz-Arista, G. Trejo: Surf. & Coat. Technol. Vol. 201 (2006), p.3359.

Google Scholar

[22] T. Agladze, in: New Materials and Technologies in Surface Finishing for Better Corrosion and Tribology Properties, A. Choms, Ed., E.G. Leuze Vlg., Saulgau (D) (1993) p.109.

Google Scholar

[23] S.U.M. Kahn: J. Phys. Chem, Vol. 92 (1988), p.2541.

Google Scholar

[24] B. Bozzini. J. Chem. Edu. Vol. 77 (2000), p.100.

Google Scholar

[25] COMSOL MULTIPHYSICS v. 3. 5a User's guide (2009).

Google Scholar