Effects of Immersion Time on the Electrochemical Impedance Spectroscopy Model of Epoxy Coating Modified by Nano-Sized Titanium

Article Preview

Abstract:

In this paper, the effects of immersion time on the electrochemical impedance spectroscopy model of nano-sized titanium modified epoxy coating immersed in 3.5(wt.%) sodilum chloride solution has been studied using electrochemical impedance spectroscopy(EIS). Through the analysis of the spectra of the coating at different immersion times, the results showed that the spectrum was different at the different immersion times. Therefore, the equivalent electrical circuit was varied with the increasing immersion time and there were the characteristics of the powder in the equivalent electrical circuits (electrochemical impedance spectroscopy model). By the study on the evlolution of impedance model in the given system, it was found that the nano-sized powder played an important part during the electrolyte diffusing to the surface of the substrate and the electrolyte reacting with the substrate

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Pages:

43-46

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Amirudin and D. Thierry: Prog. Org. Coat., Vol. 26 (1995) No. 1, pp.1-28.

Google Scholar

[2] C. N. Cao , J. Q. Zhang , Electrochemical Impedance Spectroscope (Science Press publication, China, 2002).

Google Scholar

[3] J. T. Zhang, J. M. Hu, J.Q. Zhang and C. N. Cao: Prog. Org. Coat., Vol. 49 (2004) No. 4 pp.293-301.

Google Scholar

[4] C. Liu, Q. Bi, A. Leylang and A. Matthews: Corros., Sci., Vol. 45 (2003) No. 6, pp.1257-1273.

Google Scholar

[5] C. G. Lliverira and M. G. S. Ferreira: Corros. Sci., Vol. 45 (2003) No. 1, pp.123-138.

Google Scholar

[6] C. G. Lliverira and M.G. S. Ferreira: Corros. Sci., Vol. 45 (2003) No. 1, pp.139-147.

Google Scholar

[7] J. M. Hu, J. Q. Zhang and C. N. Cao: Prog. Org. Coat., Vol. 46 (2003) No. 4, pp.273-279.

Google Scholar

[8] M. Kendig, F. Masfeld and S. Tsai: Corros. Sci., Vol. 23 (1983) No. 4, pp.317-329.

Google Scholar

[9] F. Masfeld: Electrochim. Acta, Vol. 38 (1993) No. 14, pp.1891-1897.

Google Scholar

[10] D. F. Wei, I. Chatterjee and D. A. Jones: Corrosion, Vol. 51(1995) No. 2, pp.97-104.

Google Scholar

[11] X.J. Wu, H.Y. Ma, S.H. Chen, Z.Y. Xu and A.F. Sui: J. Electrochem. Soc., Vol. 146 (1999) No. 5, pp.1847-1853.

Google Scholar

[12] A.V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot and M. G. Proud: Electrochim. Acta, Vol. 40 (1995) No. 16, pp.2657-2668.

Google Scholar

[13] X. Z. Zhang, Y. L. Du and F. H. Wang: 16th International Corrosion Conference (Beijing, China, September 19-24, 2005). Section 14-20.

Google Scholar