Optical and Electronic Properties of Mn-Doped ZnO Films Synthesized by RF Magnetron Sputtering

Article Preview

Abstract:

. Zn1-xMnxO films are prepared by radio frequency (RF) magnetron sputtering method. The wurtzite ZnO crystal can be well retained up to a Mn composition of 6.7% and doped Mn ions substituted into Zn sites of ZnO host lattice. All the samples show high transparency over the wavelengths from 450 to 800 nm. Optical transmittance study showed an increase in the bandgap (Eg) with increase in Mn atomic fraction x following Eg=3.26+1.43x eV. Furthermore, the midgap absorption around 420 nm (3 eV) in Mn doped ZnO films suggest that there are impurity levels created by doped Mn ions. The room temperature resistivities of the samples show an increase with the increase of Mn content, which indicates that the doped element is at the status of deep levels.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Pages:

80-83

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoc: J. Appl. Phys., Vol. 98 (2005), p.041301.

DOI: 10.1063/1.1992666

Google Scholar

[2] N. Hasuike, K. Nishio, T. Isshiki, K. Kisoda, and H. Harima: Phys. Stat. Sol., Vol. 6 (2009), p.213.

Google Scholar

[3] T. Dietl, H. Ohno, F. Matsukura, J. Cibért, and D. Ferrand: Science, Vol. 287 (2000), p.1019.

Google Scholar

[4] K. Sato and H. Katayama-Yoshida: Jpn.J. Appl. Phys., Vol. 39 (2000), p. L555.

Google Scholar

[5] K. Ueda, H. Tabata, and T. Kawai: Appl. Phys. Lett., Vol. 79 (2001), p.988.

Google Scholar

[6] S. Deka and P. A. Joy: Appl. Phys. Lett., Vol. 89 (2006), p.032508.

Google Scholar

[7] W.L. Yang, X.L. Wu, T. Qiu, G.G. Siu, and P.K. Chu: J. Appl. Phys., Vol. 99 (2006), p.074303.

Google Scholar

[8] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, and S. Koshihara: Appl. Phys. Lett., Vol. 78 (2001), p.958.

DOI: 10.1063/1.1348323

Google Scholar

[9] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, and J. Nrayan: Solid State Commun., Vol. 121 (2002), p.371.

Google Scholar

[10] S.W. Jung, S.J. An, G. Yi, U. Jung, S. Lee, and S. Cho: Appl. Phys. Lett., Vol. 80 (2002), p.4561.

Google Scholar

[11] S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl: Nature Materials, Vol. 6 (2007), p.440.

DOI: 10.1038/nmat1910

Google Scholar

[12] Z.F. Wu, X.M. Wu, L.J. Zhuge, B. Hong, X.M. Yang, T. Yu, J.J. He, and Q. Chen: Applied Surface Science, Vol. 256 (2010), p.2259.

Google Scholar

[13] Y.J. Li, B. Zhang, W. Lu, Y. Wang, and J. Zou: Appl. Phys. Lett., Vol. 93 (2008), p.131919.

Google Scholar

[14] S. Venkataraj, N. Ohashi, I. Sakaguchi, Y. Adachi, T. Ohgaki, H. Ryoken, and H. Haneda: J. Appl. Phys., Vol. 102 (2007), p.014905.

DOI: 10.1063/1.2752123

Google Scholar

[15] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, and J. Narayan: Solid State Communications, Vol. 121 (2002), p.371.

DOI: 10.1016/s0038-1098(01)00464-1

Google Scholar

[16] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki: Appl. Phys. Lett., Vol. 75 (1999), p.3366.

DOI: 10.1063/1.125353

Google Scholar

[17] J. Han, P.Q. Mantas, and A.M.R. Senos: J. Eur. Ceram. Soc., Vol. 22 (2002), p.49.

Google Scholar

[18] H.J. Lin, D.Y. Lin, J.Z. Hong, C.S. Yang, C.M. Lin and C.F. Lin: Phys. Status Solidi C, Vol. 6 (2009) No. 6, p.1468.

Google Scholar