Low-Temperature Synthesis of Improved LiMn2O4 by a Modified Solution Combustion Synthesis

Article Preview

Abstract:

Pure and highly crystalline spinel LiMn2O4 has been successfully prepared by a modified solution combustion synthesis (MSC) method at 400oC for 5h, while strong Mn2O3 impurity is present in the product prepared by conventional solution combustion synthesis (CSC) method on the same conditions. The particle size of LiMn2O4 prepared by MSC method is about 200 nm with a uniformly distribution. Electrochemical tests indicate that the LiMn2O4 prepared by MSC method exhibits a higher capacity, better cycle life and better rate capability than that of prepared by CSC method. It is proved that some disadvantages (such as low purity and bad crystallinity) of CSC method at low temperature can be improved efficiently by MSC method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Pages:

125-128

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 18(1983) 461-472.

Google Scholar

[2] R.J. Gummow, A. Dekock, M.M. Thackeray, Solid State Ionics 69 (1994) 59-67.

Google Scholar

[3] M. Lanz, C. Kormann, H. Steininger, G. Heil, O. Haas, P. Novák, J. Electrochem. Soc. 147 (2000) 3997-4000.

Google Scholar

[4] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J.R. Dahn, J. Electrochem. Soc. 144 (1997) 205-213.

Google Scholar

[5] C.J. Curtis, J.X. Wang, D.L. Schulz, J. Electrochem. Soc. 151 (2004) 590-598.

Google Scholar

[6] J.H. Choy, D.H. Kim, C.W. Kwon, S.J. Hwang, Y.I. Kim, J. Power Sources 77 (1999)1-11.

Google Scholar

[7] W. Liu, G.C. Farrington, F. Chaput, B. Dunn, J. Electrochem. Soc. 143 (1996) 879-884.

Google Scholar

[8] D. Song, H. Ikuta, T. Uchida, M. Wakihara, Solid State Ionics 117 (1999) 151-156.

Google Scholar

[9] W.S. Yang, G. Zhang, J.Y. Xie, L.L. Yang, Q.G. Liu, J. Power Sources 80-82 (1999) 412-415.

Google Scholar

[10] D. Kovacheva, H. Gadjov, K. Petrov, S. Mandal, M.G. Lazarraga, L. Pascual, J.M. Amarilla, R.M. Rojas, P. Herrero, J.M. Rojo, J. Mater. Chem. 12 (2002) 1184-1188.

DOI: 10.1039/b107669h

Google Scholar

[11] W.S. Yang, G. Zhang, J.Y. Xie, L. Yang, Q. Liu, J. Power Sources 81-82 (1999).

Google Scholar

[12] J.M. Guo, G.Y. Liu, J. Liu, B.S. Wang, Key Eeg. Mater. 368-372 (2008) 296-298.

Google Scholar

[13] K.M. Lee, H.J. Choi, J.G. Lee, J. Mater. Sci. Lett. 20(2001) 1309-1311.

Google Scholar

[14] H. Fang, L.P. Li, Y. Yang, G.F. Yan, G. Li. J. Power Sources 184 (2008) 494-497.

Google Scholar

[15] J.W. Fergus, J. Power Sources 195 (2010) 939-954.

Google Scholar

[16] P. Kalyani, N. Kalaiselvi, N. Muniyandi, J. Power Sources 111 (2002) 232-238.

Google Scholar