Effects of External Transverse Alternating Magnetic Field on the Heat Flux Density Distribution of Atmospheric Pressure Plasma Arc

Abstract:

Article Preview

A theoretical analysis was carried out to investigate the characteristics of atmospheric pressure plasma arc injected transverse to a transverse alternating magnetic field and a mathematical model was developed to describe the heat flux density distribution of the plasma arc. The effect of processing parameters, such as flow rate of working gas, arc current, magnetic flux density and the standoff from the nozzle to the workpiece, on the heat flux density distribution of plasma arc were also analyzed. The results show that it is feasible to adjust the heat flux density of the plasma arc by the transverse alternating magnetic field, which can expand the region of plasma arc thermal treatment and flatten the heat flux density upon the workpiece. With the magnetic flux density enhancing, the heat flux density gradient upon the workpiece decreases. Under the same magnetic flux density, the more gas flow rate and arc current, the more heat flux density peak increase. Contrarily, more distance from nozzle outlet to workpiece descends the heat flux density peak.

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Edited by:

H. Wang, B.J. Zhang, X.Z. Liu, D.Z. Luo, S.B. Zhong

Pages:

1439-1444

DOI:

10.4028/www.scientific.net/AMR.143-144.1439

Citation:

J. B. Meng et al., "Effects of External Transverse Alternating Magnetic Field on the Heat Flux Density Distribution of Atmospheric Pressure Plasma Arc", Advanced Materials Research, Vols. 143-144, pp. 1439-1444, 2011

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.