Spatiotemporal Clustering Method for Automatic Estimation of the FDG Input Function for Small-Animal PET

Article Preview

Abstract:

The plasma time-activity curve is often required as the input function for dynamic quantitative FDG PET studies to estimate the metabolic rate of glucose. The invasive gold standard arterial blood sampling has been suggested, however, it has many inconveniences and challenges in clinical and pre-clinical settings. Thus, the image-derived input function has been proposed to obtain the input function from dynamic images non-invasively. This method often needs a manual drawing of one or two regions of interest (ROIs), which is an operator-dependent and time-consuming task. The aim of the presented study was to capture the spatial and temporal patterns of dynamic PET images for automatic ROI extraction. Our proposed approach tries to overcome the main limitation of image clustering methods: the loss of temporal information for dynamic PET ROI definition. The experiments showed that the proposed automatic ROI method can be used for dynamic PET parameter estimation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Pages:

358-363

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Feng, S. C. Huang, and X. Wang, Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography, Int J Biomed Comput, vol. 32, pp.95-110, Mar (1993).

DOI: 10.1016/0020-7101(93)90049-c

Google Scholar

[2] K. P. Lin, S. C. Huang, Y. Choi, R. C. Brunken, H. R. Schelbert, and M. E. Phelps, Correction of spillover radioactivities for estimation of the blood time-activity curve from the imaged LV chamber in cardiac dynamic FDG PET studies, Phys Med Biol, vol. 40, pp.629-42, Apr (1995).

DOI: 10.1088/0031-9155/40/4/009

Google Scholar

[3] Y. H. Fang, et al, Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies, J Nucl Med, vol. 49, pp.606-14, Apr (2008).

DOI: 10.2967/jnumed.107.047613

Google Scholar

[4] W. Koon-Pong, et al, Segmentation of dynamic PET images using cluster analysis, Nuclear Science, IEEE Transactions on, vol. 49, pp.200-207, (2002).

DOI: 10.1109/tns.2002.998752

Google Scholar

[5] K. Jinman, et al, Segmentation of VOI From Multidimensional Dynamic PET Images by Integrating Spatial and Temporal Features, Information Technology in Biomedicine, IEEE Transactions on, vol. 10, pp.637-646, (2006).

DOI: 10.1109/titb.2006.874192

Google Scholar

[6] P. Zanotti-Fregonara, R. Maroy, et al, Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function, J Nucl Med, vol. 50, pp.461-7, Mar (2009).

DOI: 10.2967/jnumed.108.059642

Google Scholar

[7] D. W. Montgomery, A. Amira, and H. Zaidi, Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model, Med Phys, vol. 34, pp.722-36, Feb (2007).

DOI: 10.1118/1.2432404

Google Scholar

[8] B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, Digimouse: a 3D whole body mouse atlas from CT and cryosection data, Phys Med Biol, vol. 52, pp.577-87, Feb 7 (2007).

DOI: 10.1088/0031-9155/52/3/003

Google Scholar

[9] Y. Zhou and J. Bai, Multiple Abdominal Organ Segmentation: An Atlas-Based Fuzzy Connectedness Approach, Information Technology in Biomedicine, IEEE Transactions on, vol. 11, pp.348-352, (2007).

DOI: 10.1109/titb.2007.892695

Google Scholar

[10] S. Klein, M. Staring, and J. P. W. Pluim, Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines, Image Processing, IEEE Transactions on, vol. 16, pp.2879-2890, (2007).

DOI: 10.1109/tip.2007.909412

Google Scholar

[11] F. Maes, D. Vandermeulen, and P. Suetens, Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information, Medical Image Analysis, vol. 3, pp.373-386, (1999).

DOI: 10.1016/s1361-8415(99)80030-9

Google Scholar

[12] J. Kybic and M. Unser, Fast parametric elastic image registration, Image Processing, IEEE Transactions on, vol. 12, pp.1427-1442, (2003).

DOI: 10.1109/tip.2003.813139

Google Scholar

[13] J. Krivokapich, S. C. Huang, M. E. Phelps, J. R. Barrio, C. R. Watanabe, C. E. Selin, and K. I. Shine, Estimation of rabbit myocardial metabolic rate for glucose using fluorodeoxyglucose, Am J Physiol, vol. 243, pp. H884-95, Dec (1982).

DOI: 10.1152/ajpheart.1982.243.6.h884

Google Scholar

[14] R. F. Muzic, Jr. and S. Cornelius, COMKAT: compartment model kinetic analysis tool, J Nucl Med, vol. 42, pp.636-45, Apr (2001).

Google Scholar

[15] J. van den Hoff, W. Burchert, W. Muller-Schauenburg, G. J. Meyer, and H. Hundeshagen, Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization, J Nucl Med, vol. 34, pp.1770-7, Oct (1993).

Google Scholar

[16] P. L. Chow, D. B. Stout, E. Komisopoulou, and A. F. Chatziioannou, A method of image registration for small animal, multi-modality imaging, Phys Med Biol, vol. 51, pp.379-90, Jan 21 (2006).

DOI: 10.1088/0031-9155/51/2/013

Google Scholar

[17] H. -M. Wu, G. Sui, C. -C. Lee, M. L. Prins, W. Ladno, H. -D. Lin, A. S. Yu, M. E. Phelps, and S. -C. Huang, In Vivo Quantitation of Glucose Metabolism in Mice Using Small-Animal PET and a Microfluidic Device, J Nucl Med, vol. 48, pp.837-845, May 1, 2007 (2007).

DOI: 10.2967/jnumed.106.038182

Google Scholar