A Smooth Clustering Algorithm Based on Parameter Free Filled Function

Article Preview

Abstract:

In this paper, we propose an algorithm to find centers of clusters based on adjustable entropy technique. A completely differentiable non-convex optimization model for the clustering center problem is constructed. A parameter free filled function method is adopted to search for a global optimal solution of the optimization model. The proposed algorithm can avoid the numerical overflow phenomenon. Numerical results illustrate that the proposed algorithm can effectively hunt centers of clusters and especially improve the accuracy of the clustering even with a relatively small entropy factor.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Pages:

389-393

Citation:

Online since:

October 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. E. Xavier. The hyperbolic smoothing clustering method. Pattern Recognition, Vol. 43 (2010), pp.731-737.

DOI: 10.1016/j.patcog.2009.06.018

Google Scholar

[2] L. H. Zhu, X. L. Sun. Smoothing and filled function method for clustering in data mining. Communication on Applied Mathematics and Computation (in Chinese), Vol. 21 (2007), pp.10-16.

Google Scholar

[3] Q. Z. Yang. Adjustable entropy function method. Mathematica Numerica sinica (in Chinese), Vol. 23 (2001), pp.81-86.

Google Scholar

[4] Q. Wu, S. Y. Liu and L. Y. Zhang. Adjustable entropy function method for support vector machines. Journal of Systems Engineering and Electronics, Vol. 19 (2008), pp.1029-1034.

Google Scholar

[5] S. Z. Ma, Y. J. Yang and H. Liu. A parameter free filled function for unconstrained global optimization. Applied Mathematics and Computation, Vol. 215 (2010), pp.3610-3619.

DOI: 10.1016/j.amc.2009.10.057

Google Scholar

[6] W. X. Wang, Y. L. Shang and L.S. Zhang. A filled function method with one parameter for box constrained global optimization. Applied Mathematics and Computation, Vol. 194(2007) pp.54-66.

DOI: 10.1016/j.amc.2007.04.011

Google Scholar

[7] C. J. Wang, Y. J. Yang and J. Li. A new filled function method for unconstrained global optimization. Journal of Computational and Applied Mathematics, Vol. 225 (2009), pp.68-79.

DOI: 10.1016/j.cam.2008.07.001

Google Scholar

[8] A.M. Bagirov, J. Yearwood. A new nonsmooth optimization algorithm for clustering problems. Technical report, Australia, (2003).

Google Scholar

[9] P. M. Murphy, D.M. Aha. Uci repository of machine learning databases. Technical report, Department of information and Computer Science, University of Cali1fornia, Irvine, 1992. http: / www. ics. uci. edu/mlearn/MLRepository. html.

Google Scholar