An Improved Gravitation Search Algorithm for Unconstrained Optimization

Article Preview

Abstract:

Gravitation search algorithm (GSA) is a novel meta-heuristic algorithm introduced recently. In this paper, a study of boundary conditions is presented indicating the invisible wall technique outperforms absorbing and reflecting wall techniques in this framework. Experimental results show that our method is sound and efficient.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Pages:

409-413

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kalinlia and N. Karabogab, Artificial immune algorithm for IIR filter design, Engineering Applications of Artificial Intelligence. 18 (2005) 919-929.

DOI: 10.1016/j.engappai.2005.03.009

Google Scholar

[2] F.V.D. Bergh and A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Infor. Sci. 176 (2006) 937-971.

DOI: 10.1016/j.ins.2005.02.003

Google Scholar

[3] W. Du and B. Li, Multi-strategy ensemble particle swarm optimization for dynamic optimization, Infor. Sci. 178 (2008) 3096-3109.

DOI: 10.1016/j.ins.2008.01.020

Google Scholar

[4] H. Liu, A. Abraham and W. Zhang, A Fuzzy Adaptive Turbulent Particle Swarm Optimization, International Journal of Innovative Computing and Applications. 1 (2007) 39-47.

DOI: 10.1504/ijica.2007.013400

Google Scholar

[5] Ellabib, P. Calamai and O. Basir, Exchange strategies for multiple ant colony system, Infor. Sci. 177 (2007) 1248-1264.

DOI: 10.1016/j.ins.2006.09.016

Google Scholar

[6] B.J. Zhang and S.Y. Li, Ant colony optimization algorithm and its application to neuro-fuzzy controller design, J Syst. Eng. and Elec. 18 (2007) 603-610.

DOI: 10.1016/s1004-4132(07)60135-2

Google Scholar

[7] M.G.H. Omran, A.P. Engelbrecht and A. Salman, Empirical Analysis of Self-Adaptive Differential Evolution, Euro. J Oper. Res. 12 (2006) 785-804.

Google Scholar

[8] A.K. Qin and P.N. Suganthan, Self-adaptive differential evolution algorithm for numerical optimization, In Proceedings of the IEEE Congress on Evol. Comput. 2(2005)1785-1791.

DOI: 10.1109/cec.2005.1554904

Google Scholar

[9] W.Y. Qian and A.J. Li, Adaptive differential evolution algorithm for multiobjective optimization problems, Applied Mathematics and Computation. 5 (2008) 431-440.

DOI: 10.1016/j.amc.2007.12.052

Google Scholar

[10] E. Rashedi and H. Nezamabadi-pour, GSA: A Gravitational Search Algorithm, Infor. Sci. 7 (2009) 2232-2248.

DOI: 10.1016/j.ins.2009.03.004

Google Scholar

[11] Q. Zhang and H. Muhlenbein, on the convergence of a class of estimation of distribution algorithms, IEEE Trans on Evol Comput., 8 (2004) 127-136.

DOI: 10.1109/tevc.2003.820663

Google Scholar