Study on WEB Page Fusion Classification Model

Article Preview

Abstract:

A general fusion classification model is proposed, which based on information fusion, dealing with multi-media information of WEB for classification. In the model, different information is extracted from the same WEB page, processed by different pre-processing method and classification algorithm. The different classification result of Sub fusion layer is input into the Fusion layer separately. And the final classification result output from Fusion layer. The experiment shows, the fusion classification model can improve the classification precision effectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Pages:

944-948

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhang, B., Chen, Y., Fan, W., Fox, E. A., Goncalves, M., Cristo, M. & Calado, P. (2005a). Intelligent GP fusion from multiple sources for text classification. InProceedings of the 14th ACM international conference on Information and knowledgemanagement (pp. pp.477-484.

DOI: 10.1145/1099554.1099688

Google Scholar

[2] Zhang, XD. Text classification based on decision fusion model. In Proceedings of the 28th annual international ACM SIGIRconference on Research and development in information retrieval (pp. pp.266-273). : ACM Press, Salvador, Brazil.

Google Scholar

[3] Zhang, G. P. (2007). Avoiding Pitfalls in Neural Network Research. Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37, pp.3-16.

DOI: 10.1109/tsmcc.2006.876059

Google Scholar

[4] Zhang, L., Zhu, J. & Yao, T. (2004). An evaluation of st. atistical spam filtering techniques. ACM Transactions on Asian Language Information Processing (TALIP), 3, pp.243-269.

DOI: 10.1145/1039621.1039625

Google Scholar

[5] Zheng, Z. & Webb, G.I. (2000). Lazy Learning of Bayesian Rules. Machine Learning, 41, pp.53-84.

Google Scholar

[6] Xu L Y, Du Q D. Application of neural fusion to accident forecast in hydropower station. Proceedings of the Second International Conference on Information Fusion. Vol2 Sunnyvale, 1999, pp.1166-1171.

Google Scholar

[7] Google adwords keyword tool. http: /adwords. google. com/select/KeywordToolExternal.

Google Scholar

[8] The open directory project. http: /www. dmoz. org/. Yahoo! directory. http: /dir. yahoo. com.

Google Scholar

[9] B. E. Boser, I. Guyon, and V. Vapnik. A trainingalgorithm for optimal margin classifiers. In COLT, pages 144-152, (1992).

Google Scholar

[10] A. Z. Broder, M. Fontoura, V. Josifovski, andL. Riedel. A semantic approach to contextual advertising. In SIGIR, pages 559-566, (2007).

DOI: 10.1145/1277741.1277837

Google Scholar

[11] P. Chatterjee, D. L. Hoffman, and T. P. Novak. Modeling the clickstream: Implications for web-basedadvertising efforts. Marketing Science, 22(4): 520-541, (2003).

DOI: 10.1287/mksc.22.4.520.24906

Google Scholar

[12] E. J. Glover, K. Tsioutsiouliklis, S. Lawrence, D. M. Pennock, and G. W. Flake. Using web structure forclassifying and describing web pages. In WWW, pages562-569, (2002).

DOI: 10.1145/511446.511520

Google Scholar

[13] S. A. Golder and B. A. Huberman. The structure of collaborative tagging systems. CoRR, abs/cs/0508082, (2005).

Google Scholar

[14] K. Golub and A. Ard¨o. Importance of html structural elements and metadata in automated subjectclassification. In ECDL, pages 368-378, (2005).

Google Scholar