Theoretical Modeling and Simulations of Magnetic Fluids in Gradient Magnetic Fields

Article Preview

Abstract:

When a magnetic field is applied to magnetic fluids (MF), various structures of MF are formed: chain-like structures in low fields, columnar, lamellar and striped structures in high fields, ellipsoidal structures in pulsed fields, and layered structures in rotating fields. The inner structures and particle distributions of MF in gradient magnetic fields are quite interesting, but very few works have been done on this. In the present study, the effects of magnetic field gradient on the structures of MF are investigated using a two-dimensional Monte Carlo simulation. The results show that a gradient distribution of magnetic particles is formed under gradient magnetic fields. Moreover, with increasing the field gradient, more magnetic particles are pushed to the right region and particle distribution changes from grass-like clusters to needle-like ones.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

1510-1513

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Rosensweig, R. Kaiser, G. Miskolczy, J. Colloid Interface Sci. Vol. 29 (1969), p.680.

Google Scholar

[2] M. Matsuzaki, H. Kikura, J. Matsushita, M. Aritomi, H. Akatsuka, Sci. Technol. Adv. Mater. Vol. 5 (2004), p.667.

Google Scholar

[3] M. Piao,A. M. Lane, D. T. Johnson, J. Magn. Magn. Mater. Vol. 267 (2003), p.366.

Google Scholar

[4] S. Cutillas, G. Bossis, A. Cebers1, Phys. Rev. E Vol. 57 (1998), p.804.

Google Scholar

[5] M. F. Islam, K. H. Lin, D. Lacoste, T. C. Lubensky, A. G. Yodh, Phys. Rev. E Vol. 67 (2003), p.021402.

Google Scholar

[6] J. H. E. Promislow, A. P. Gast, Phys. Rev. E Vol. 56 (1995), p.642.

Google Scholar

[7] Morisaki, S. Imagawa, A. Sagara, O. Motojima, Fusion Eng. Des. Vol. 81 (2006), p.2749.

Google Scholar

[8] D. M. Heyes, D. J. McKenzie, R. Buscall, J. Colloid Interface Sci. Vol. 142 (1991) 303.

Google Scholar

[9] H. Tanaka, T. Araki, Chem. Eng. Sci. Vol. 61 (2006), p.2108.

Google Scholar

[10] M. Aoshima, A. Satoh, J. Colloid Interface Sci. Vol. 280 (2004), p.83.

Google Scholar

[11] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. Vol. 21 (1953), p.1087.

DOI: 10.1063/1.1699114

Google Scholar