Effect of Sr on the Microstructure and Properties of Hypereutectic Al-20 wt% Si Alloy

Article Preview

Abstract:

The effect of Sr on the microstructures and mechanical properties of Al-20 wt% Si alloys were investigated. The results show that with increasing of the Sr content, the primary silicon firstly changes from polygonal block or large plate to small block, then to large polygonal block, and a large number of honeycomb-like on the primary silicon block. The eutectic silicon firstly changes into a fine start with a long needle-like fibrous or branched further to a short stubby dendrite or worm-like, continuously columnar dendrite α of quantity increase. In addition, with increasing the Sr content, the elongation of alloy increases, but there are ups and downs, the tensile strength changes little after the first sharp increases in hardness is parabola. When the Sr content is between 0.04 wt% and 0.06 wt%, the morphology and mechanical properties is the most ideal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

454-459

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Wang, J.P. Xie, Z.X. Liu, et al: Foundry. Vol. 54(2005), pp.24-27.

Google Scholar

[2] Timmermans G, Froyen L: Wear. Vol. 2(1999), pp.105-117.

Google Scholar

[3] Apelian, Cheng JJ. AFS Trans. Vol. 94(1986), pp.797-808.

Google Scholar

[4] S.F. Yao, W.M. Mao, A.M. ZHAO: Foundry. Vol. 49(2000), pp.512-519.

Google Scholar

[5] J.H. Kang, G.Y. Ding, Q.X. Zhang: Journal of Mate. Sci. Eng. Vol. 16(1993), pp.54-57.

Google Scholar

[6] G.H. Qi, X.F. Liu, Q. Z. Yang, et al: Mater. Sci. Technol. Vol. 9(2001), pp.211-214.

Google Scholar

[7] D. Z. Jin: Special Casting & Nonferrous Alloys. Vol. 2(1988), pp.8-11.

Google Scholar

[8] X.F. Liu, J.G. Qiao, Y.X. Liu , et al: Mater. Sci. Vol. 40(2004), pp.471-476.

Google Scholar

[9] Q. H. Lu, R.Y. Wang: Foundry. Vol. 9(1997), pp.44-49.

Google Scholar

[10] L.Y. Huang: Materials Science. Vol. 22(1986), pp.310-316.

Google Scholar

[11] B.Y. Liu: Foundry. Vol. 2(1991), pp.18-21.

Google Scholar

[12] G.F. Mi, Z.J. Zhu, H.W. Wang, et al: Foundry technology. Vol. 27(2006), pp.1217-1222.

Google Scholar

[13] G Chai and L Backerud: AFS Trans. Vol. 100(1992), pp.847-1733.

Google Scholar

[14] G.M. Dong, G.X. Sun: Special Casting & Nonferrous Alloys. Vol. 25(2005), pp.641-941.

Google Scholar

[15] Cantoor B: Mater. Sci. Eng. A Vol. 260(1997), pp.151-156.

Google Scholar

[16] M. C. Gui, J. Jia, Q. C Li: Aeronautical Materials. Vol. 17(1997 ), pp.23-26.

Google Scholar

[17] L. M. Zhang, H.C. Liao, G.X. Sun: Special Casting & Nonferrous Alloys. Vol. 2(2002), pp.45-47.

Google Scholar

[18] H.C. Liao, Y Ding , G.X. Sun: Mater. Sci. Vol. 38(2002), pp.245-249.

Google Scholar

[19] H.C. Liao, G.X. Sun: Foundy. Vol. 53(2004), pp.534-834.

Google Scholar

[20] Lu SZ, Hellawell A.: Thermal analysis and mechanism. Vol. 2(1995), pp.38-40.

Google Scholar

[21] Shu ZL, Hellawell A: Metallugrical Trans. Vol. 11(1987), pp.1721-1733.

Google Scholar

[22] W.M. Wang, X.F. Bian: Mater. Sci. Vol. 34(1998), pp.645-649.

Google Scholar

[23] Fuoco R, Correa E R: AFS Trans. Vol. 160(1996), pp.1151-1157.

Google Scholar

[24] J.H. Zhang, Z.S. Ren, Q. Zhao: Light Metal. Vol. 10(2007), pp.59-62.

Google Scholar