A Review on Fabrication Methods of High-Quality Graphene Nanoribbons

Article Preview

Abstract:

Three different fabrication methods of graphene nanoribbons are discussed. Graphene nanoribbons can be produced through unzipping the carbon nanotubes and also cutting graphene sheets, but with rough edges. Another method is a simple, surface-based bottom-up chemical method without the need for cutting, resulting in high-quality graphene ribbons. The band gap of a graphene ribbon strongly depends on its geometry, particularly its width. The third method creates easily graphene ribbons with different width.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1737-1740

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang ,S. V. Dubonos, I. V. Grigorieva and A. A. Firsov: Science. Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim: Proc. Natl. Acad. Sci. U. S. A. Vol. 102 (2005), p.10451.

DOI: 10.1073/pnas.0502848102

Google Scholar

[3] M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe: J. Phys. Soc. Jpn. Vol. 65 (1996), p. (1920).

Google Scholar

[4] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus: Phys. Rev. B. Vol. 54 (1996), p.17954.

Google Scholar

[5] K. Wakabayashi: Phys. Rev. B. Vol. 64 (2001), p.125428.

Google Scholar

[6] V. Barone, O. Hod and G. E. Scuseria: Nano Lett. Vol. 6 (2006), P. 2748.

Google Scholar

[7] Y. W. Son, M. L. Cohen and S. G. Louie: Nature Vol. 444 (2006), p.347.

Google Scholar

[8] Z. H. Chen, Y. M. Lin, M. J. Rooks and P. Avouris: Physica E. Vol. 40 (2007), p.228.

Google Scholar

[9] M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim: Phys. Rev. Lett. Vol. 98 (2007), p.206805.

Google Scholar

[10] L. Tapaszto, G. Dobrik, P. Lambin and L. P. Biro: Nature Nanotechnol. Vol. 3 (2008), p.397.

Google Scholar

[11] S. S. Datta, D. R. Strachan, S. M. Khamis and A. T. C. Johnson: Nano Lett. Vol. 8 (2008), p. (1912).

Google Scholar

[12] L. J. Ci, et al: Nano Res. Vol. 1 (2008), p.116.

Google Scholar

[13] J. Campos-Delgado, et al: Nano Lett. Vol. 8 (2008), p.2773.

Google Scholar

[14] X. L. Li, et al: Science Vol. 319 (2008), p.1229.

Google Scholar

[15] L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov and H. J. Dai: Nature Vol. 458(2009), p.877.

Google Scholar

[16] D. V. Kosynkin, et al: Nature Vo. 458 (2009), p.872.

Google Scholar

[17] A. L. Elı´as, et al: Nano Lett. Vol. 10 (2009), p.366.

Google Scholar

[18] L. Jiao, X. Wang, G. Diankov, H. Wang and H. Dai: Nature Nanotechnol. Vol. 5(2010), p.321.

Google Scholar

[19] C. Leonardo, et al: Nano Letters Vol. 97 (2009), p.2600.

Google Scholar

[20] J. Cai, P. Ruffieux, R. Jaafar et al: Nature Vol. 466 (2010) p.470.

Google Scholar