Effects of a InGaAs Strained Layer on Structures and Photoluminescence Characteristics of InAs Quantum Dots

Article Preview

Abstract:

The influences of a thin InGaAs layer grown on GaAs(100) substrate before deposited InAs self-assembled quantum dots(SAQDs) were experimentally investigated. Scanning electronic microscope (SEM) measurements show that the InGaAs strained layer may release the strain between wetting layer and QDs, and then enlarge size of QDs. When the thickness of InAs layer is small, the QDs are chained. Temperature dependent photoluminescence (TDPL) measurements show that the PL peaks of InAs QDs with In0.1Ga0.9As show much more red shift compared with the QDs directly deposited on GaAs matrix, and PL integral intensity enhances as T rises from 50K to 90K. We attribute this enhancement to the small potential barrier between WL and QDs produced by the InGaAs stained layer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

897-902

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. X. Li, T. Daniels-Race and Hasan M A: Appl. Phys. Lett. Vol. 80 (2002), p.1367.

Google Scholar

[2] F. Klopf, J. P. Reithmaier and A. Forchel: Appl. Phys. Lett. Vol. 77 (2000), P. 1419.

Google Scholar

[3] L. Kong, Z. Y. Wu, Z. C. Feng Z C and Ian T. Ferguson: J. Appl. Phys. Vol. 101 (2007), P. 126101.

Google Scholar

[4] S. P. Ryu, Y. T. Lee, N. K. Cho, et al :J. Appl. Phys. Vol. 102 (2007), p.023105.

Google Scholar

[5] L. Kong, Z. C. Feng, Z. Wu, and W. Lu: Semicond. Sci. Technol. Vol. 23, (2008), P. 075044.

Google Scholar

[6] J. He, B. Xu, Wang Z G, et al: Physica E, Vol. 19 (2003), pp.292-297.

Google Scholar

[7] V. M. Ustinov, A. E. Zhukov, N. A. Maleev, et al: J. Cryst. Growth Vol. 227-228 (2001), p.1155.

Google Scholar

[8] A. Stintz A, G. T. Liu, H. Li, et al : IEEE Photonics Technol. Lett., Vol. 12 (2000), p.591.

Google Scholar

[9] K. Nishi K, H. Saito H, S. Sugou S, et al: Appl. Phys. Lett. Vol. 74 (1999), p.1111.

Google Scholar

[10] G. Park, O. B. Shchekin, D. L. Huffaker, et al: IEEE Photonics Technol. Lett. Vol. 12 (2000), p.230.

Google Scholar

[11] A. Stintz A, G. T, Liu, A. L. Gray, et al :J. Vac. Sci. Technol. B, Vol. 18 (2000), p.1496.

Google Scholar

[12] Y. Temko, T. Suzuki, P. Kratzer, et al: Phys. Rev. B, Vol. 68 (2003), p.165310.

Google Scholar

[13] Z. H. Zhang, K. Y. Cheng: J. Vac. Sci. Technol. B, Vol. 22 (2004), p.1508.

Google Scholar

[14] V. Mlinar and F. M. Peeters: Appl. Phys. Lett., 97 (2007), p.021910.

Google Scholar

[15] P. Dawson, Z. Ma, K. Pierz, et al : Appl. Phys. Lett. Vol. 81 ( 2002), p.2349.

Google Scholar