Mesoporous Carbon with CNT Skeleton and their Electrochemical Properties

Article Preview

Abstract:

A kind of Carbon nanotube-implanted mesoporous carbon sphere (CNTs-MCS) is successfully prepared by a facile polymerization-induced colloid aggregation method using gelatin as a soft template. SEM, TEM, BET measurement and BJH method reveal that the obtained CNTs-MCS possess a mesoporous character, with specific surface area (284 m2•g-1) and uniform pore size of 3.9 nm. As the electrode material for supercapacitor in 6 mol•L-1 KOH, a low equivalent series resistance of 0.9 Ω cm2 and a maximum specific capacitance of 189 F•g-1 with a measured power density of 8 kW•kg-1 at energy density of 26.3 Wh•kg-1 are obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1258-1262

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. E. Conway, Electrochemical supercapacitors-scientific fundamentals and technological applications, Kluwer Academic, New York, (1999).

Google Scholar

[2] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, J. Power Sources. 60 (1996) 239.

Google Scholar

[3] K. Koltz, M. Carlen, Electrochim. Acta. 45 (2000) 2483.

Google Scholar

[4] P. L. Taberna, P. Simon, J. F. Fauvarque, J. Electrochem. Soc. 150 (2003) A292.

Google Scholar

[5] E. Raymundo-Pinero, F. Leroux, F. Beguin, Adv. Mater. 18 (2006) 1877.

Google Scholar

[6] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, Appl. Phys. Lett. 70 (1997) 1480.

Google Scholar

[7] B. Zhang, J. Liang, C. L. Xu, B. Q. Wei, D. H. Wu, J. Power Sources. 84 (1999)126.

Google Scholar

[8] E. Frackowiak, S. Gauther, H. Gauther, F. Bequen, Carbon. 37 (1999) 61.

Google Scholar

[9] E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power Sources. 97–98 (2001) 822.

DOI: 10.1016/s0378-7753(01)00736-4

Google Scholar

[10] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoro, F. Beguin, Chem. Phys. Lett. 361 (2002) 35.

Google Scholar

[11] S. Shiraishi, H. Kurihara, K. Okabe, D. Kulicova, A. Oya. Electrochem. Commun. 4 (2002) 593.

Google Scholar

[12] C. Du, N. Pan, Nanotechnology. 17 (2006) 5314.

Google Scholar

[13] C. Portet, P.L. Taberna, P. Simon, E. Flahaut, J. Power Sources. 139 (2005) 371.

Google Scholar

[14] Y. Show, K. Imaizumi. Diamond Relat. Mater. 16 (2007) 1154.

Google Scholar

[15] X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang, Z. Z. Chen. Mater. Lett. 57 (2002) 734.

Google Scholar

[16] W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Carbon 45 (2007) 1757.

Google Scholar