Effect of Gd Substitution on the Dielectric Properties and Magnetoelectric Effect of BiFeO3

Article Preview

Abstract:

Multiferroic Bi1-xGdxFeO3(x=0, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid state reaction method. For all the samples prepared, they exhibit magnetoelectric effect at room temperature, and the dielectric constant and dielectric loss decrease with increasing frequency in the range from 10000Hz to 1 MHz from a typical orientational dielectric relaxation process. It has been found that both dielectric constant and dielectric loss are strongly dependent on the Gd3+ content. And substitution of Bi with rare earth Gd helps to eliminate the impurity phase in BiFeO3 ceramics.,

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1470-1475

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. A. Hill . J. Phys. Chem. B, 2000, 104: 6694.

Google Scholar

[2] M. Fiebig. J. Phys., D Appl. Phys. 2005, 38 , 123–152.

Google Scholar

[3] A. Filippetti ., N. A. Hill . J Magn Magn Mater, 2001, 236: 176.

Google Scholar

[4] M. Polomaska , W. Kaczmarek and Z. Pajak. Phys. Status Solidi A, 1974, 23: 567.

Google Scholar

[5] Yusuke Tokunaga, Nobuo Furukawa, Hideaki Sakai, Yasujiro Taguchi, Taka-hisa Arima and Yoshinori Tokura. Nature materials, 2009, inpress (published online).

Google Scholar

[6] R.K. Mishra, K Dillip. R. N Pradhan, et al. Journal of Magnetism and Magnetic Materials 2008, 320: 2602–2607.

Google Scholar

[7] K.Y. Yun. D. Ricinschi, T. Kanashima, M. Noda and M. Okayama. Jpn. J. Appl. Phys. 2004, 43: L647.

Google Scholar

[8] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe. Phys. Rev. B, 2005, 71: 014113.

Google Scholar

[9] S. Iakovlev, C. H. Solterbeck , M. Kuhnke., Es-Souni M. Multiferroic.J. Appl. Phys., 2005, 97: 094901.

DOI: 10.1063/1.1881776

Google Scholar

[10] K. S. Nalwa, A. Garg, A. Upadhyaya. Materials Letters, 2008, 62: 878–881.

Google Scholar

[11] S.T. Zhang, Y. Zhang, M.H. Lu, C. L. Du, Y. F. Chen. Appl. Phys. Lett. 2006, 88: 162901.

Google Scholar

[12] F.G. Chang, N. Zhang, F. Yang, S.X. Wang and G. L. Song. J. Phy. D: Appl. Phys. 2007, 40, 7799-7803.

Google Scholar

[13] H.R. Liu, X.Z. Wang. Solid State Communications, 2008, 148, 203–205.

Google Scholar

[14] K.S. Hong, and S.V. Suryanarayana. Appl Phys Lett, 2003, 83: 2217.

Google Scholar

[15] Y. P. Wang, L. Zhou, M. F. Zhang , X.Y. Chen, J. M. Liu and Z. G. Liu. Appl. Phys. Lett. 2004, 84 1731–3.

Google Scholar

[16] G. P. Uniyal, K.L. Yadav. Materials Letters, 2008, 62, 2858–2861.

Google Scholar

[17] V. R. Palkar, J. John and R. Pinto. Appl. Phys. Lett., 2002, 80: 1628.

Google Scholar

[18] D. H. Wang, W. C. Goh, M. Ning, and C. K. Ong, Appl. Phys. Lett., 2006, 88, 212907.

Google Scholar

[19] Youn-Ki Jun, Won-Taek Moon, Chae-Myung Chang. Solid State Communications, 2005, 135, 133-137.

Google Scholar

[20] Devishvili, M. Rotter, A. Lindbaum, et al. J. Phys.: Condens. Matter, 2008, 20, 104218.

Google Scholar

[21] T. Kimura, S. Kawamoto, I. Yamada, M, Azuma, M. Takano, Y. Tokura, Phys. Rev. B. 2003, 67180401.

Google Scholar