Theory and Experiment of Isotropic Electromagnetic Beam Bender Made of Dielectric Materials

Article Preview

Abstract:

In this paper, we utilize the deformation transformation optics (DTO) method to design electromagnetic beam bender, which can change the direction of electromagnetic wave propagation as desire. According to DTO, the transformed material parameters can be expressed by deformation tensor of the spatial transformation. For a beam bender, since the three principal stretches at each point induced by the spatial transformation are independent to each other, there are many possibilities to simplify the transformed material parameters of the bender by adjusting the stretches independently. With the DTO method, we show that the reported reduced parameters of the bender obtained by equivalent dispersion relation can be derived as a special case. An isotropic bender is also proposed according to this method, and it is fabricated by stacking dielectric materials in layered form. Experiments validate the function of the designed isotropic bender for a TE wave; it is also shown that the isotropic bender has a broadband with low loss, compared with the metamaterial bender. The isotropic bender has much easier design and fabrication procedures than the metamaterial bender.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1508-1516

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Greenleaf, M. Lassas, and G. Uhlmann, On non-uniqueness for Calderón's inverse problem, Math. Res. Lett. 10, 685 (2003).

Google Scholar

[2] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling Electromagnetic Fields, Science 312, 1780 (2006).

DOI: 10.1126/science.1125907

Google Scholar

[3] U. Leonhardt, Optical conformal mapping, Science 312, 1777-1780 (2006).

Google Scholar

[4] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science 314, 977 (2006).

DOI: 10.1126/science.1133628

Google Scholar

[5] M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, and D. R. Smith, Design of Electromagnetic Cloaks and Concentrators Using Form-Invariant Coordinate Transformations of Maxwell's Equations, Photon. Nanostruct. Fundam. Appl. 6, 87-95 (2008).

DOI: 10.1016/j.photonics.2007.07.013

Google Scholar

[6] H. Chen and C. T. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys. Lett. 90, 241105 (2007).

DOI: 10.1063/1.2748302

Google Scholar

[7] M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, D. R. Smith, Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations, Phys. Rev. Lett. 100, 063903 (2008).

DOI: 10.1103/physrevlett.100.063903

Google Scholar

[8] M. Rahm, D. A. Roberts, J. B. Pendry and D. R. Smith, Transformation-optical design of adaptive beam bends and beam expanders, Opt. Express 16, 11555 (2008).

DOI: 10.1364/oe.16.011555

Google Scholar

[9] W. X Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang and Q. Cheng, Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials, Phys. Rev. E. 78, 066607 (2008).

DOI: 10.1103/physreve.78.066607

Google Scholar

[10] Z. L. Mei, and T. J. Cui, Arbitrary bending of electromagnetic waves using isotropic materials, J. Appl. Phys. 105, 104913 (2009).

DOI: 10.1063/1.3132842

Google Scholar

[11] N. I. Landy and W. J. Padilla, Guiding light with conformal transformations, Opt. Express 17, 14872 (2009).

DOI: 10.1364/oe.17.014872

Google Scholar

[12] J. Hu, X. Zhou and G. Hu, Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation, Opt. Express 17, 1308 (2009).

DOI: 10.1364/oe.17.001308

Google Scholar

[13] J. Hu, X. Zhou and G. Hu, Nonsingular two dimensional cloak of arbitrary shape, Appl. Phys. Lett. 95, 011107 (2009).

DOI: 10.1063/1.3168652

Google Scholar

[14] G. W. Milton, M. Briane and J. R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248(2006).

DOI: 10.1088/1367-2630/8/10/248

Google Scholar

[15] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui and D. R. Smith, Broadband Ground-Plane Cloak, Science 323, 366(2009).

DOI: 10.1126/science.1166949

Google Scholar

[16] W. M. Lai, D. Rubin and E. Krempl, Introduction to Continuum Mechanics, 3 edition. (Butterworth-Heinemann, Burlington, 1995).

Google Scholar

[17] Z. Chang, X. Zhou, J. Hu and G. Hu, Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries, Opt. Express 18, 6089 (2010).

DOI: 10.1364/oe.18.006089

Google Scholar