Effect of Annealing Conditions on Microstructure Evolution of NiMnFeGa Shape Memory Thin Film

Article Preview

Abstract:

The microstructure evolution of sputtered polycrystalline Ni54.75Mn13.25Fe7Ga25 ferromagnetic shape memory thin film annealed under different conditions is studied. Microstructure of different annealed films was studied using Transmission Electron Microscope (TEM) and corresponding selected area electron diffraction (SAED) patterns. The result shows that in the microstructure of as-deposited Ni54.75Mn13.25Fe7Ga25 free-standing film, after annealed at 1073 K for different time, the crystalline grain grows up with the increase of the annealing time. By analysis of the SAED patterns, the structure of the thin films change from face-centered cubic austenite to orthorhombic structure martensite compared between the film annealed at 1073 K for 10 mins, 1hr, 4 hrs, and 24 hrs respectively. It indicated that the heat treatment is an effective method of crystallizing behavior for the thin film.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1745-1749

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A. Chernenko, E. Cesari, V.V. Kokorin, I.N. Vitenko: Scr Metall Mater Vol. 33 (1995), p.1239.

Google Scholar

[2] G.H. Wu, C.H. Yu, L.Q. Meng, J.L. Chen, F.M. Yang, S.R. Qi, W.S. Zhan: Appl Phys Lett Vol. 75 (1999), p.2990.

Google Scholar

[3] S.J. Murray, M. Marioni, S.M. Allen, R.C. O'Handley: Appl Phys Lett Vol. 77 (2000), P. 886.

Google Scholar

[4] V.V. Khovailo, R. Kainuma, T. Abe, K. Oikawa, T. Takagi: Scripta Mater Vol. 51 (2004), p.13.

Google Scholar

[5] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko: Appl Phys Lett Vol. 80 (2002), p.1746.

Google Scholar

[6] A.A. Cherechukin, I.E. Dikshtein, D.I. Ermakov, A.V. Glebov, V.V. Koledov, D.A. Kosolapov, V.G. Shavrov, A.A. Tulaikova, E.P. Krasnoperov, T. Takagi: Phys Lett A Vol. 291 (2001), p.175.

DOI: 10.1016/s0375-9601(01)00688-0

Google Scholar

[7] A.A. Cherechukin, I.E. Dikshtein, D.I. Ermakov, A.V. Glebov, V.V. Koledov, D.A. Kosolapov, V.G. Shavrov, A.A. Tulaikova, E.P. Krasnoperov, T. Takagi: Phys Lett A Vol. 291 (2001), p.175.

DOI: 10.1016/s0375-9601(01)00688-0

Google Scholar

[8] G.H. Wu, W.H. Wang, J.L. Chen, L. Ao, Z.H. Liu, and W.S. Zhan: Appl Phys Lett Vol. 80 (2002), p.634.

Google Scholar

[9] Z.H. Liu, M. Zhang, W.Q. Wang, W. H. Wang, J. L. Chen, and G. H. Wu: J Appl Phys Vol. 92 (2002), p.5006.

Google Scholar

[10] H.B. Wang, F. Chen, Z.Y. Gao, W. Cai and L.C. Zhao: Material Science and Engineering A Vol. 438-440 (2006), p.990.

Google Scholar

[11] M. Suzuki, M. Ohtsuka, T. Suzuki, M. Matsumoto, H. Miki: Mater Trans JIM Vol. 40 (1999), p.1174.

Google Scholar

[12] M. Wuttig, C. Craciunescu, J. Li: Transc Mater JIM Vol. 41 (2000), p.933.

Google Scholar

[13] S.K. Wu, K.H. Tseng, J.Y. Wang: Thin Solid Films Vol. 408 (2002), p.316.

Google Scholar

[14] A. Hakola, O. Heczko, A. Jaakkola, T. Kajava, K. Ullakko: Appl Phys A Vol. 79 (2004), p.1505.

DOI: 10.1007/s00339-004-2831-7

Google Scholar

[15] V.A. Chernenko, M. Ohtsuka, M. Kohl, V.V. Khovailo and T. Takagi: Smart Mater Struct Vol. 14 (2005), p. S245.

DOI: 10.1088/0964-1726/14/5/012

Google Scholar

[16] C. Liu, W. Cai, X. An, L.X. Gao, Z.Y. Gao, and L.C. Zhao: Materials Science and Engineering A Vol. 438-440 (2006), p.986.

Google Scholar

[17] K. Koike, M. Ohtsuka, Y. Honda, H. Katsuyama, M. Matsumoto, K. Itagaki, Y. Adachi, H. Morita: Journal of Magnetism and Magnetic Materials Vol. 310 (2007), p. e996.

DOI: 10.1016/j.jmmm.2006.10.1047

Google Scholar

[18] Y.X. Tong, Y. Liu, J.M. Miao, L.C. Zhao: Scripta Mater Vol. 52 (2005), p.983.

Google Scholar

[19] T. Sawaguchi, M. Sato, A. Ishida: Metall Mater Trans A Vol. 35 (2004), p.111.

Google Scholar

[20] V.A. Chernenko, M. Ohtsuka, M. Kohl, V.V. Khovailo, T. Takagi: Smart Mate Struct Vol. 14 (2005), p. S245.

DOI: 10.1088/0964-1726/14/5/012

Google Scholar

[21] J.M. Wang, C.B. Jiang, H.B. Xu: Materials Science and Engineering A Vol. 438-440 (2006), p.1022.

Google Scholar

[22] Y.Q. Ma, C.B. Jiang, G. Feng, H.B. Xu: Scripta Materialia Vol. 48 (2003), p.365.

Google Scholar

[23] Y. Kishi, Z. Yajima, K. Shimizu, M. Wuttig: Materials Science and Engineering A Vol. 378 (2004), p.361.

Google Scholar

[24] M. Han, J.C. Bennett, M.A. Gharghouri, J. Chen, C.V. Hyatt: Acta Materialia Vol. 55 (2007), p.1731.

Google Scholar

[25] Z. Y. Gao, W. Cai, L. C. Zhao, W. H. Wang, G. H. Wu, B. G. Shen and W. S. Zhan: Materials Science and Technology Vol. 19 (2003), p.1622.

Google Scholar

[26] T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, H.P. Karnthaler: Journal of the Mechanics and Physics of Solids Vol. 55 (2007), p.419.

DOI: 10.1016/j.jmps.2006.06.006

Google Scholar