Effect of Annealing Temperature on Properties of ZnO Thin Films

Article Preview

Abstract:

ZnO thin films were deposited by DC reactive magnetron sputtering, and the samples were annealed from 100°C to 400°C, respectively. With the help of x-ray diffractmeter (XRD), spectrophotometer, and photoluminescence (PL) spectroscopy system, the microstructure, intrinsic stress, optical properties, and PL properties were investigated, respectively. The XRD results reveal that all the ZnO films are found to have the hexagonal wurtzite structure with prominent (002) peak. With the annealing temperature increasing, the grain size increased accordingly. All the samples exhibit compressive stress, and the stress value decreasing with annealing temperature increasing. Optical transmittance spectra investigated that all the samples have high transmittance in visible range. With annealing temperature increasing, peak transmittance rising of the sample were observed. The fundamental absorption edge, which associated with band gap of materials, shifting to longer wavelength is observed too. PL results shows that the sample annealed with 300°C have higher intensity emission peak.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

1796-1800

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Hirschwald, P. Bonasewicz, L. Ernst, M. Grade, D. Hofmann, S. Krebs, R. Littbarski, G. Neumann, M. Grunze, D. Kolb, H.J. Schulz, Current Topics in Materials Science, Vol. 7(North-Holland, Amsterdam, 1981).

Google Scholar

[2] D. Look, D. Reynolds, J. Sizelove, R. Jones, C. Litton, G. Cantwe, W. Harsch, Solid State Communications, 105, 399(1998).

DOI: 10.1016/s0038-1098(97)10145-4

Google Scholar

[3] S. Muthukumar, N.W. Emanetoglu, G. Patounakis, J. Vac. Sci. Technol. A 19 (2001) 1850.

Google Scholar

[4] Y.J. Kim, S.M. Chung, Y.H. Jeong, J. Vac. Sci. Technol. A 19 (2001) 1095.

Google Scholar

[5] M. Purica, E. Budianu, E. Rusu, Thin Solid Films 383 (2001) 284.

DOI: 10.1016/s0040-6090(00)01579-0

Google Scholar

[6] Tadatsugu Minami, Semicond. Sci. Technol. 20 (2005) S35–S44.

Google Scholar

[7] L. P. Schuler, M. M. Alkaisi , P. Miller, R. J. Reeves, Microelectronic Engineering 83 (2006) 1403.

Google Scholar

[8] M.C. Larciprete, D. Haertle, Belardini1,M. Bertolotti1,F. Sarto, P.G. Unter, Appl. Phys. B 82(2006), 431.

Google Scholar

[9] R. D. Vispute et al., Appl. Phys. Lett. 73, 348 (1998).

Google Scholar

[10] D.P. Norton, Y. W. Heo, M.P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm and T. Steiner, Materials today (June 2004) 34-40.

DOI: 10.1016/s1369-7021(04)00287-1

Google Scholar

[11] T.E. Murphy, D.Y. Chen and J.D. Phillips, Journal of electronic materials, Vol. 34, No. 6, (2005).

Google Scholar

[12] H. H. Afify, S. H. EL-Hefnawi, A. Y. Eliwa, M. M. Abdel-Naby and N. M. Ahmed, Egypt. J. Solids, Vol. (28), No. (2), (2005).

Google Scholar

[13] D.P. Zhang, P. Fan, X. M. Cai, J. J. Huang, L. L. Ru, Z. H. Zheng, G. X. Liang, Y K. Huang, Applied Physics A . 97 (2009) 437.

Google Scholar

[14] R.J. Hong, J.B. Huang, H.B. He, Z.X. Fan, J.D. Shao, Appl. Surf. Sci. 242(2005)346.

Google Scholar

[15] H.A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).

Google Scholar