Low Temperature Fired Ferrite/Ceramic Composite Materials and their Permeability Spectra

Article Preview

Abstract:

Ni-Cu-Zn ferrite/CaTiO3 and Ni-Cu-Zn ferrite/BaTiO3 composites which can be applied in low temperature co-fired ceramic (LTCC) technology were synthesized by conventional solid-state reaction lower than 950°C. The complex permeability spectra of the above two composites have been investigated. The contribution of spin rotation and domain wall motion to the permeability spectra was estimated by the numerical fitting of measured data to the relevant formula. Influence of two types of magnetizing processes on the permeability of different composites has been analyzed combining with the variation of microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

293-298

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Persson, P. Jansson, A. G. Jack and B. C. Mecrow: Proceedings of the 7th International Conference on Electrical Machines and Drives, Issue 412 (1995), p.242.

Google Scholar

[2] V. P. Efimova and O. K. Frolov: Stroit. Mater. Issue 5 (1998), p.6.

Google Scholar

[3] H. Zhang, H. Zhong, B. Liu, Y. Jing and Y. Liu: IEEE Trans. Magn. Vol. 41 (2005), p.3454.

Google Scholar

[4] W. Ling, H. Zhang, Y. Li, Y. Xie, Y. He, L. Peng and F. Bai: J. Appl. Phys. Vol. 105 (2009), 07D911.

Google Scholar

[5] J. Shen, Y. Bai, J. Zhou and L. Li: J. Am. Ceram. Soc. Vol. 88 (2005), p.3440.

Google Scholar

[6] P. T. Joseph, K. Lin, I. Lin, Y. Chen, Y. Yao and H. Cheng: Ferroelectrics Vol. 332 (2006), p.123.

Google Scholar

[7] T. Tsutaoka, M. Ueshima and T. Tokunaga: J. Appl. Phys. Vol. 78 (1995), p.3983.

Google Scholar

[8] T. Tsutaoka: J. Appl. Phys. Vol. 93 (2003), p.2789.

Google Scholar

[9] H. Su, H. Zhang, X. Tang, Y. Jing and Y. Liu: J. Magn. Magn. Mater. Vol. 310 (2006), p.17.

Google Scholar

[10] Y. Matsuo, M. Inagki, T. Tomozawa and F. Nakao: IEEE Trans. Magn. Vol. 37 (2001), p.2359.

Google Scholar

[11] A. C. F. M. Costa, E. Tortella, M. R. Morelli and R. H. G. A. Kiminami: J. Magn. Magn. Mater. Vol. 256 (2003), p.174.

Google Scholar

[12] W. C. Kim, S. J. Kim, S. W. Lee and C. S. Kim: J. Magn. Magn. Mater. Vol. 226 (2001), p.1418.

Google Scholar

[13] G. Arlt, D. Hennings and G. de With: J. Appl. Phys. Vol. 58 (1985), p.1619.

Google Scholar

[14] L. Wang, L. Liu, D. Xue, H. Kang and C. Liu: J. Alloys Compd. Vol. 440 (2007), p.78.

Google Scholar

[15] J. H. Jean and C. H. Lee: Jpn. J. Appl. Phys. Vol. 38 (1999), p.3508.

Google Scholar

[16] J. L. Snoek: Physica Vol. 14 (1948), p.207.

Google Scholar

[17] G. T. Rado: Rev. Mod. Phys. Vol. 25 (1953), p.81.

Google Scholar

[18] T. Nakamura, T. Tsutaoka and K. Hatakeyama: J. Magn. Magn. Mater. Vol. 138 (1994), p.319.

Google Scholar

[19] Y. Naito: Proceedings of the First International Conference on Ferrites (1970), p.558.

Google Scholar

[20] T. Mochizuki: Proceedings of the Sixth International Conference on Ferrites (1992), p.53.

Google Scholar

[21] J. Bera and P. K. Poy: Phys. B Condens. Matter Vol. 363, (2005), 128-132.

Google Scholar

[22] P. I. Slick, in: Ferromagnetic Materials, Vol. 2, edtied by E. P. Wohlfath, North Holland, Amsterdam (1986).

Google Scholar