The Growth, Surface Topography and Curie Temperature in Ni Thin Films: Kinetic Lattice Monte Carlo Simulation

Article Preview

Abstract:

Based on the Monte Carlo (MC) simulation, the film growth and magnetic properties of Ni (100) films are investigated. The simulated results indicate that the surface roughness of the Ni films drops with the increase of the substrate temperature and the decrease of the deposition rate. The Curie temperature Tc is greatly influenced by the surface roughness and size of Ni films. Moreover, it is found that the Curie temperatures of the films are related to the mean coordination number Z and the surface roughness r. The simulated results explain the experimental facts well.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Pages:

493-498

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.N. Baibich, J.M. Broto, A. Fert et al: Phys. Rev. Lett. Vol. 61(1988), p.2472.

Google Scholar

[2] A. Fert, P. Grunberg, A. Barthelemy : J. Magn. Magn. Mater. 140-144(1995), p.1.

Google Scholar

[3] J.Q. Xiao, J.J. Samuel, C.L. Chien: Phys. Rev. Lett. Vol. 68(1992), p.3749.

Google Scholar

[4] S.S.P. Parkin: Phys. Rev. Lett. Vol. 67(1991), p.3598.

Google Scholar

[5] R.V. Helmolt,J. Wecker,B. Holzapfel : Phys. Rev. Lett. Vol. 71(1993), p.2331.

Google Scholar

[6] A. Moser,K. Takano D.T. Margulies,M. Albrecht,Y. Sonobe,Y. Ikeda,S. Sun, and E.E. Fullerton: J. Phys. D: Appl. Phys. Vol. 35 (2002) , p.157.

DOI: 10.1088/0022-3727/35/19/201

Google Scholar

[7] K. Ouchi: IEEE. Transactions on. Mag. Vol. 37 (2001), p.1217.

Google Scholar

[8] Q. Feng Q.Y. Ye,Z.Z. Weng L.Q. Jiang Z.G. Huang F.G. Zhang, and Y.W. Du: Mater. Sci. Forum. 475-479 (2005), p.3165.

Google Scholar

[9] Z.G. Huang, Z.G. Chen,Y. Xiao Y.S. Li, and Y.W. Du: Mate. Sci. Engi. B . Vol. 99 (2003), p.536.

Google Scholar

[10] N. Pilet T.V. Ashworth M.A. Mkarioni, and H.J. Hug,K. Zhang K.P. Lieb: J. Magn. Magn. Mater. Vol. 316 (2007), p.583.

Google Scholar

[11] M.J. Pechan E.E. Fullerton, and I.K. Schuller: J. Magn. Magn. Mater. Vol. 183 (1998), p.19.

Google Scholar

[12] Q. Feng Z.G. Huang, and Y.W. Du: Solid State Communications. Vol. 134 (2005), p.195.

Google Scholar

[13] Z.G. Huang, Q. Feng and Y.W. Du: J. Magn. Magn. Mater. Vol. 269 (2004), p.184.

Google Scholar

[14] Y. Li and K. Baberschke: Phys. Rev. Lett. Vol. 68 (1992), p.1208.

Google Scholar

[15] T.A. Witten, Jr. and L.M. Sander: Phys. Rev. Lett. Vol. 47 (1981) , p.1400.

Google Scholar

[16] J. Salik: Phys. Rev. B. Vol. 32 (1985) , p.1824.

Google Scholar

[17] P. Bruschi, P. Cagnoni, and A. Nannini: Phys. Rev. B. Vol. 55 (1997), p.7955.

Google Scholar

[18] Z.Y. Wang ,Y.H. Li and James B. Adams: Surface Science. Vol. 450 (2000), p.51.

Google Scholar

[19] C.L. Liu and J.B. Adams: Surface Science. Vol. 265 (1992), p.262.

Google Scholar

[20] C.L. Liu and James B. Adams: Surface Science. Vol. 268 (1992) , p.73.

Google Scholar

[21] A. Scherz, C. Sorg, M. Bernien, N. Ponpandian, K. Baberschke, H. Wende: Phys. Rev. B. Vol. 72 (2005) , p.054447.

DOI: 10.1103/physrevb.72.054447

Google Scholar

[22] Z.G. Huang Z.G. Chen,K. Peng D.H. Wang F.M. Zhang W.Y. Zhang, and Y.W. Du: Phys. Rev. B. Vol. 69 (2004), p.094420.

Google Scholar

[23] A. Galdikas: Comput. Mater. Sci. Vol. 38 (2007), p.716.

Google Scholar

[24] M. Devika, N. Koteeswara Reddy, K. Ramesh, V. Ganesan, E.S.R. Gopal and K.T. Ramakrishna Reddy: Appl. Surf. Sci. Vol. 253 (2006) , p.1673.

Google Scholar