Fabrication and Characterization of a Toxoplasma gondii DNA Sensing System

Article Preview

Abstract:

We presented a fast, specific, and sensitive DNA sensing system, which composed of a CdTe/Fe3O4 magnetic core-shell quantum dots (energy donor), a commercial quencher (BHQ2; energy acceptor), and a designed single strand Toxoplasma gondii DNA. The designed single strand Toxoplasma gondii DNA was applied to link the energy donor and acceptor, and target DNA was detected based on mechanism of fluorescence resonance energy transfer. The CdTe quantum dots, Fe3O4 magnetic nanoparticles, CdTe/Fe3O4 magnetic core-shell quantum dots, and sensing probe were step-wisely prepared. Properties of synthesized quantum dots were investigated by transmission electron microscopy, fluorescence spectrum, nano zeta potential and submicron particle size analyzer, and X-ray diffraction, respectively. Specificity and sensitivity of sensing probe was determined by measuring the recovery of fluorescence intensity. The obtained sensing probe with magnetic properties can be simply separated or concentrated from the hybridized solution with a common magnet. The resulting data revealed the sensing system was successfully fabricated, and which has high sensitivity and specificity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

1543-1546

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar: Nano Lett. Vol. 9 (2009), p.926.

Google Scholar

[2] C. Lu, J. Zhou, R. H. Lipson, and Z. Ding: Mater. Lett. Vol. 63 (2009), p.563.

Google Scholar

[3] M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris: ACS Nano. Vol. 2(2008), p.2445.

Google Scholar

[4] S. J. Miyake-Stoner, A. M. Miller, J. T. Hammill, J. C. Peeler, K. R. Hess, R. A. Mehl, and S. H. Brewer: Biochemistry-US. Vol. 48 (2009), p.5953.

DOI: 10.1021/bi900426d

Google Scholar

[5] J. Wruss, P. D. Pollheimer, I. Meindl, A. Reichel, K. Schulze, W. Schofberger, J. Piehler, R. Tampe, D. Blaas, and H. J. Gruber: J. Am. Chem. Soc. Vol. 131 (2009), p.5478.

DOI: 10.1021/ja807917t

Google Scholar

[6] Y. P. Kim, S. Park, E. Oh, Y. H. Oh, and H. S. Kim: Biosens. Bioelectron. Vol. 24 (2009), p.1189.

Google Scholar

[7] G. X. Liang, H. C. Pan, Y. Li, J. R. Zhang, and J. J. Zhu: Biosens. Bioelect. Vol. 24 (2009), p.3693.

Google Scholar

[8] J. Li, and J. Z. Zhang, Coordin: Chem. Rev. Vol. 253 (2009), p.3015.

Google Scholar

[9] H. H. Chen, Y. P. Ho, X. Jiang, T. H. Wang, and K. W. Leong: Nano Today. Vol. 4 (2009), p.125.

Google Scholar

[10] Y. H. Wang, H. F. Wang, and X. P. Yan: Chem-Eur. J. Vol. 15 (2009), p.5436.

Google Scholar

[11] W. Dong, L. Guo, M. Wang, and S. K. Xu: J. Lumin. Vol. 129 (2009), p.926.

Google Scholar

[12] A. Montoya, G. Miro, M. Mateo, and I Fuentes: Vet. Parasitol. Vol. 160 (2009), p.159.

Google Scholar

[13] J. M. Zhang, C. C. Yao, S. C. Xu, Z. Dai, B. Sun, Guo Zheng, and S. Q. Sun, Nanotechnology and Precision Engineering. Vol. 7 (2009), p.110.

Google Scholar

[14] J. Y. Moon, Y. T. Jeon, Y. Chang, G. H. Lee: Superlattice. Microst. Vol. 43 (2008), p.141.

Google Scholar