Self-Made Gas Diffusion Electrodes for Dye Wastewater Treatment

Article Preview

Abstract:

Gas diffusion electrodes (GDEs) were selected for the reactive brilliant red X-3B simulated wastewater treatment, perovskite oxide LaNiO3 as the catalyst. And a satisfying degradation effect was achieved. The optimal conditions for the catalyst preparation with sol-gel method were 1.5 as the molar ratio of citric acid and metal ions, 10 as the pH, and 750 °C as the roasting temperature. The optimal conditions for the electrodes preparation were 1 g pore-forming agent, 0.6 g catalyst, 3 g PTFE and 300 °C as the roasting temperature. Scanning electron microscope, X-ray diffraction were applied to analyze the performance of catalyst and electrodes, and the results were satisfying.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

1704-1711

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anastasios Sakalis, Konstantinos Fytianos, Ulrich Nickel, Chem. Eng. J. 119 (2006), p.127.

Google Scholar

[2] Enric Brillas, Juan C. Calpe, Juan Casado, Water Res. 34 (2000), p.2253.

Google Scholar

[3] Li-Choung Chiang, Juu-En Chang, Ten-Chin Wen, Water Res. 29 (1995), p.671.

Google Scholar

[4] Christos Comninellis, Electrochim. Acta 39 (1994), p.1857.

Google Scholar

[5] Sanjay S. Vaghela, Ashok D. Jethva, Bhavesh B. Mehta, Environ. Sci. Technol. 39 (2005), p.2848.

Google Scholar

[6] Y. Samet, S. Chaabane Elaoud, S. Ammar, J. Haz. Mats. 138 B (2006), p.614.

Google Scholar

[7] Eduardo Arevalo, Wolfgang Calmano, J. Haz. Mats. 146 (2007) , p.540.

Google Scholar

[8] G. R. P. Malpass, D. W. Miwa, S. A. S. Machado, J. Haz. Mats. 137 B (2006), p.565.

Google Scholar

[9] Morimoto T, Suzuki K, Matsubara T, Yoshida N. Electrochim Acta 45 (2000), p.4257.

Google Scholar

[10] Kiros Y, Pirjamali M, Bursell M. Electrochim Acta 51 (2006), p.3346.

Google Scholar

[11] Alcaide F, Cabot P-L, Brillas E. J Power Scources 153 (2006), p.47.

Google Scholar

[12] Bidault F, Brett DJL, Middleton PH, Brandon NP. J Power Sources 187 (2009), p.39.

Google Scholar

[13] Foller PC. J Appl Electrochem 16 (1986), p.27.

Google Scholar

[14] Brillas E, Casado J. Chemosphere 47 (2002), p.241.

Google Scholar

[15] Brillas E, Boye B, Morieme M. J Electroanal Chem 557(2003), p.135.

Google Scholar

[16] Uchimura A, Ichinose O, Furuya N. Denki Kagaku 65(1997), p.1032.

Google Scholar

[17] Ichinos O, Kawaguchi M, Furuya F. J Appl Electrochem 34(2004), p.55.

Google Scholar

[18] Yeager E. Electrochim Acta 29(1984), p.1527.

Google Scholar

[19] Taylor EJ, Anderson EB, Vilambi NRK. J Electrochem Soc 139(1992), p. L45.

Google Scholar

[20] Mukerjee S, Srinivasan S, Soriaga MP. J Electrochem Soc 142(1992), p.1409.

Google Scholar

[21] Beard BC, Ross PN Jr. J Electrochem Soc 137(1990), p.3368.

Google Scholar

[22] Kiros Y. J Electrochem Soc 143(1996), p.2152.

Google Scholar

[23] Genieas L, Faure R, Durand R. Electrochim Acta 44(1998), p.1317.

Google Scholar

[24] Furuya N, Aikawa H. Electrochim Acta 45(2000), p.4251.

Google Scholar

[25] Klapste B, Vondrak J, Velicka J. Electrochim Acta 47(2002), p.2365.

Google Scholar

[26] Yang J, Xu JJ. Electrochem Commun 5(2003), p.306.

Google Scholar

[27] Sin-iti Kitazawa, Yeongsoo Choi, Shunya Yamamoto. Thin Solid Films, 515 (2006), p.1901-(1904).

Google Scholar