Photodegradation of Ammonia by TiO2 Nanoparticles Produced by Flame CVD Process

Article Preview

Abstract:

Photodegradation of ammonia by mixed-phase TiO2 nanoparticles, synthesized by the oxidation of TiCl4 in turbulent propane/air flame chemical vapor deposition (CVD) process, has been investigated experimentally by using a tubular photoreactor with thin TiO2 films coated on the reactor wall by sedimentation. Effects of ammonia initial concentration from 2-40mg/m3, relative humidity from 30-75%, rutile mass fraction from 20-50% of TiO2 nanoparticles on degradation degree are examined under the conditions of 38g/cm2 catalyst loading, 24mW/cm2 UV irradiation of 254nm, and 5.7sec residence time in the reactor. Results show that photocatalytic activity is higher when rutile mass fraction is from 0.2 to 0.4, corresponding higher PL intensity, and 60% conversion is achieved at initial ammonia concentration of around 5mg/m3 and 70% relative humidity. Based on experimental results, separation of photoinduced electron (e-) and hole (h+) pairs by rutile phase is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

391-394

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Yu: J. Geophys. Res. 111(2006)D01204.

Google Scholar

[2] D.V. Vayenas, S. Takahama, C.I. Davidson & S.N. Pandis: J. Geophys. Res. 110(2005) D07S14.

Google Scholar

[3] H.W. Paerl, R.L. Dennis & D.R. Whitail: Estuaries 25(4B) (2002)677.

Google Scholar

[4] K. Yang, X.N. Zhou, W.A. Yan, D.R. Hang & P. Steinmann: Waste Management 28(2008) 2750.

Google Scholar

[5] X.Y. Xie: Final Report of Air Pollutants from Landfills on the east coast areas of Pudong of Shanghai, 2008 (in Chinese).

Google Scholar

[6] H.Y. Xie, G.L. Gao, Z. Tian, N.C. Bing & L.J. Wang: Particuology 7(2009)204.

Google Scholar

[7] A. Spurr, H. Myers: Anal. Chem., 29(1957)760.

Google Scholar

[8] K.V. Baiju, A. Zachariah & S. Shukla: Catal. Lett. 130(2009)130.

Google Scholar

[9] H.Y. Xie, Y.N. Zhang & Q.L. Xu: J Nanosci. Nanotechnol. 10(2010) 5445.

Google Scholar

[10] O. Carp, C. L. Huisman & A. Reller: Prog. in Solid State Chem. 32(2004)33.

Google Scholar

[11] M. Graetzel & A. Frank: J. Phys. Chem. 86(1982)2964.

Google Scholar

[12] J. Lantz,R. Corn: J. Phys. Chem. 98(1994)9387.

Google Scholar

[13] F. Chen, Y. Xie, J. Zhao, G. Lu: Chemosphere 44(2000)11159.

Google Scholar

[14] A.L. Linsebigler, G. Lu, J.T. Yates: Chem. Rev. 95(1995)735.

Google Scholar

[15] B. Levy, W. Liu, S. Gilbert: J. Phys. Chem. B 101(1997)1810.

Google Scholar

[16] Y.V. Kolen'ko, B.R. Churagulov, M. Kunst, L Mazerolles, C.C. Justin: Appl Catal B 54(2004)51.

Google Scholar