Study on Bio-Hydrogen Production of Different Fermentation Types

Article Preview

Abstract:

By the researches and analyses of the fermentation type in the bio-hydrogen production system, ethanol-type fermentation bacteria had the largest H2-production capability, butyric acid type fermentation bacteria took the second place, and propionic acid-type fermentation bacteria had the least H2-poduction capability. When the organic loading rate (OLR) is 24kgCOD/m3•d, HRT is 8h and temperature is 35 °C, the highest hydrogen production capability corresponding were 4.2, 1.3 and 0.018 mol•kg MLVSS−1•d−1, so ethanol-type fermentation was optimal type for hydrogen production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

377-382

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Dunn. Hydrogen Futures: Toward a Sustainable Energy System. Int.J. Hydrogen Energy. Vol. 27(2002), p.235.

DOI: 10.1016/s0360-3199(01)00131-8

Google Scholar

[2] T. N. Veziroglu. Quarter Century of Hydrogen Movement 1974-2000. Int. J. Hydrogen Energy. Vol. 25(2000), p.1143.

DOI: 10.1016/s0360-3199(00)00038-0

Google Scholar

[3] Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy. Vol. 32(2007), p.172.

DOI: 10.1016/j.ijhydene.2006.08.014

Google Scholar

[4] Fan KS, Kan NR, Lay JJ. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol. Vol. 97(2006), p.84.

DOI: 10.1016/j.biortech.2005.02.014

Google Scholar

[5] Fan Y, Li C, Lay JJ, Hou H, Zhang G. Optimization of initial substrate and pH levels for germination of sporing hydrogenproducing anaerobes in cow dung compost. Bioresour Technol. Vol. 91(2004), p.189.

DOI: 10.1016/s0960-8524(03)00175-5

Google Scholar

[6] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT08. Process Biochem. Vol. 35(2000), p.589.

DOI: 10.1016/s0032-9592(99)00109-0

Google Scholar

[7] Lay JJ, Fan KS, Chang J, Ku CH. Influence of chemical nature of organic wastes on their conversion to hydrogen by heatshock digested sludge. Int J Hydrogen Energy. Vol. 28 (2003), p.1361.

DOI: 10.1016/s0360-3199(03)00027-2

Google Scholar

[8] Ren NQ, Wang BZ, Huang JC. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol Bioeng. Vol. 4(1997), p.428.

DOI: 10.1002/(sici)1097-0290(19970605)54:5<428::aid-bit3>3.0.co;2-g

Google Scholar

[9] Cohen, A., van Gemert, J.M., Zoetemeyer, R.J., Breure, A.M., Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewater. Process Biochem. Vol. 19(1984), p.228.

Google Scholar

[10] Li JZ , Ren NQ, Li B, Qin Z, He JG. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresour Technol. Vol. 99(2008), p.6528.

DOI: 10.1016/j.biortech.2007.11.072

Google Scholar

[11] GONG Manli , REN Nanqi , XING Defeng. Continuous operation of hydrogen-producing reactor with butyrate-type fermentation [J]. Acta Scientiae Circumstantiae. Vol. 25(2005), p.275.

Google Scholar

[12] Lee KS, Lin PJ, Fangchiang K, Chang JS. Continuous hydrogen production by anaerobic mixed microflora using a hollowfiber microfiltration membrane bioreactor. Int J Hydrogen Energy. Vol. 32(2007), p.950.

DOI: 10.1016/j.ijhydene.2006.09.018

Google Scholar

[13] N.Q. Ren , H. Chua , S.Y. Chan , Y.F. Tsang , Y.J. Wang , N. Sin. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresource Technology. Vol. 98 (2007), p.1774.

DOI: 10.1016/j.biortech.2006.07.026

Google Scholar

[14] Wan-Qian Guo, Nan-Qi Ren, Xiang-Jing Wang, Wen-Sheng Xiang, Zhao-Hui Meng, Jie Ding, Yuan-Yuan Qu, Lu-Si Zhang. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor . International Journal of Hydrogen Energy. Vol. 33(2008).

DOI: 10.1016/j.ijhydene.2008.05.033

Google Scholar

[15] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Resource. Vol. 33 (1999), p.2579.

DOI: 10.1016/s0043-1354(98)00483-7

Google Scholar

[16] Horiuchi J I , Shimizu T , Tada K, Kanno T , Kobayashi M. Selective production of organic acids in anaerobic acid reactor by pH control [J] . Bioresource Technology. Vol. 82(2002), p.209.

DOI: 10.1016/s0960-8524(01)00195-x

Google Scholar

[17] APHA. Standard Methods for the Examination of Water and Wastewater. 19th edition. Washington, DC: American Public Health Association; (1995).

Google Scholar

[18] van den Heuvel JC, Beeftink HH, Verschuren PG. Inhibition of the acidogenic dissimilation of glucose in anaerobic continuous cultures by free butyric acid. Appl Microbiol Biotechnol. Vol. 29(1988), p.89.

DOI: 10.1007/bf00258357

Google Scholar