Influence of Three Organic Phosphonates on Calcite Crystal Growth

Article Preview

Abstract:

Calcite is a common scale in water cooling systems treated and controlled with Organic phosphonates. The effect of three phosphonic acids (ethylene diamine tetra(methylene phosphonic acd), EDTMP; hexamethylene diamine tetra(methylene phosphonic acd), HDTMP; and diethylene triamine penta(methylene phosphonic acd), DTPMP) on the growth of the calcite has been investigated by pH curve method(pHCM). Experimental data obtains by pH value measurement of Ca(HCO3)2 supersaturated solution before and after precipitation. Besides, molecular dynamic simulations of the interaction of the phosphonic acids with the calcite(104) indicate the inhibitor effectiveness: EDTMP< DTPMP< HDTMP according to the difference in the carbon chain between nitrogen atoms. This is in agreement with the pHCM measurements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Pages:

437-442

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Murugavel, R., Choudhury, A., Walawolkar, M. G., Chem. Rev. Vol. 108 (2008), p.3549.

Google Scholar

[2] Shi, F. N., Cunha-Silva, L., Ferreira, R. A. S., J. Am. Chem. Soc. Vol. 130 (2008), p.150.

Google Scholar

[3] Liang, J., Shimizu, G. K. H., Inorg. Chem. Vol. 46 (2007), p.10449.

Google Scholar

[4] Ralston, P. H., J. Petrol. Technol. Vol. 21 (1969), p.1029.

Google Scholar

[5] Davis, R. V., Carter, P. W., Kamrath, M. A., Johnson, D. A., Reed, P. E., Z. Amjad, Ed. Vol. 13 (1995), pp.33-46.

Google Scholar

[6] Bernd Nowack, Alan, T. Stone., J. Colloid Interface Sci. Vol. 214 (1999), p.20.

Google Scholar

[7] Xyla, A. ZG., Mikroyannidis, J., Koutsoukos, P. G., J. Colloid Interface Sci. Vol. 153 (1992), p.537.

Google Scholar

[8] Black, s., Bromley, L. A., Cottier, D., Davey, R. J., Dobbs, B., J. Chem. Soc. Faraday Trans. Vol. 87 (1991), p.3409.

Google Scholar

[9] Black, S. N., Bromley, L. A., Cottier, D., Davey, R. J., Dobbs, B., J. Chem. Soc. Faraday Trans. Vol. 87 (1991) , p.3409.

Google Scholar

[10] Bromley, L. A., Cottier, D., Davey, R. J., Langmuir. Vol. 9 (1993), p.3594.

Google Scholar

[11] Pina, C. M., Putnis, C.V., Becker, U., Surface Science. Vol. 553 (2004), p.62.

Google Scholar

[12] Barouda, E., Demadis, K. D., Freeman, S. R., Jones, F., Crystal Growth & Design. Vol. 7 (2007), p.321.

Google Scholar

[13] Ghizellaoui., S., Ledion, J., Desalination. Vol. 16 (2004), p.315.

Google Scholar

[14] Jones, F., Stanley, A., Oliveira, A., Journal of Crystal Growth. Vol. 249 (2003), p.589.

Google Scholar

[15] Nora H. de Leeuw, Timothy G. Cooper., Crystal Growth & Design. Vol. 4 (2004), p.125.

Google Scholar

[16] Timothy G. Cooper, Nora H. de Leeuw, Langmuir. Vol. 20 (2004), p.3986.

Google Scholar

[17] Zieba, A., Sethuraman, G., Perez, F., Nacollas, G. H., Langmuir. Vol. 12 (1996), p.2856.

Google Scholar