[1]
Seiichi Taruta , Ryuji Fujisawa, Kunio Kitajima, Preparation and mechanical properties of machinable alumina/mica composites, Journal of the European Ceramic Society 26 (2006) 1687–1693.
DOI: 10.1016/j.jeurceramsoc.2005.03.258
Google Scholar
[2]
Luis.C. J, Puertas. I, Villa. G, Material removal rate and electrode wear study on the EDM of silicon carbide, Journal of Materials Processing Technology 164-165(2005) 889-896.
DOI: 10.1016/j.jmatprotec.2005.02.045
Google Scholar
[3]
Malkin S. Ritter JE, Grinding mechanisms and strength degration for ceramics ASME, Journal of engineering for Industry 1989; 111: 2111-18.
Google Scholar
[4]
Kovach.J. A, Laurich.M. A, Malkin. S, Srinivasan. S, Bandyopadyay. B, Ziegler.K. R, A feasibility of investigation of high speed, low damage grinding for advanced ceramics, SME fifth international grinding process conference, Vol. 1, SME, (1993).
DOI: 10.2172/755533
Google Scholar
[5]
Klocke. F, Verlemann. E, Schippers. C, High speed grinding of ceramics. Machining ofceramics and composites, Marcel Dekker, New York 1999; 119-138.
Google Scholar
[6]
Hwang.T. W, Evans.C. J, Whitenon.E. P, Malkin. S, High speed grinding of silicon nitride with electroplated diamond wheels. 1. wear and wheel life, Manufacturing science and engineering, MED-Vol. 10, ASME, 1999 , 431-441.
DOI: 10.1115/imece1999-0701
Google Scholar
[7]
Hwang.T. W, Evans.C. J, Whitenon.E. P, Malkin. S, High speed grinding of silicon nitride with electroplated diamond wheels. 2. Wheel topography and grinding mechanisms , Manufacturing science and engineering, MED-Vol. 10, ASME, 1999 , 443-452.
DOI: 10.1115/imece1999-0702
Google Scholar
[8]
Hwang.T. W, Evans.C. J, Malkin. S, An investigation of high speed grinding with electroplated diamond wheels, Annals of CIRP 49(1) (2000) 245-248.
DOI: 10.1016/s0007-8506(07)62938-2
Google Scholar
[9]
Hwang. H, Liu.Y. C, Experimental investigation of machining characteristics and removal mechanisms of advanced ceramics in high speed grinding, International Journal of Machine Tools and Manufacture 43, 2003, 811-823.
DOI: 10.1016/s0890-6955(03)00050-6
Google Scholar
[10]
Chwan-Huei Tsai, Hong-Wen Chen, Laser cutting of thick ceramic substrates by controlled fracture technique, Journal of Materials Processing Technology 136 (2003), 166–173.
DOI: 10.1016/s0924-0136(03)00134-1
Google Scholar
[11]
Rajurkar.K. P, Wang.Z. Y, Kuppattan. A, Micro removal of ceramic material (AL2O3) in the precision ultrasonic machining, Precision Engineering 23, 1999, 73-78.
DOI: 10.1016/s0141-6359(98)00026-9
Google Scholar
[12]
Rahaman. M, Senthil Kumar. A, Prakash J.R. S, Micro milling of pure Copper, Journal of materials Processing Technology 116(2001) 39-43.
DOI: 10.1016/s0924-0136(01)00848-2
Google Scholar
[13]
Takacs. M, Vero. B, Meszaros. I, Micro milling of metallic materials, Journal of Materials processing Technology 138(2003) 152-155.
Google Scholar
[14]
Wang. W, Kweon.S. H, Yang.S. H, A study on roughness of Micro end milled surface produced by miniature machine tool, Journal of Processing Technology 162-163(2005) 702-708.
DOI: 10.1016/j.jmatprotec.2005.02.141
Google Scholar
[15]
Sinan Filiz, Caroline. M Conely, Mathew. B Wasserman, O Burak Ozdoganlar, An experimental investigation of micro- machinability of Copper 101 using tungsten carbide micro-end mills, International Journal of Machine Tools and Manufacture 47(2007).
DOI: 10.1016/j.ijmachtools.2006.09.024
Google Scholar
[16]
Yang.J. L, Chen.J. C, A systematic approach for identifying optimum surface roughness performance in end milling operations, Industrial Technology 17(2)(2001).
Google Scholar
[17]
Suresh.P. V, Venkateswara Rao.P., Deshmukh.S. D, A genetic algorithm approach for optimization of surface roughness prediction model, International Journal of Machine tool and Manufacture, Vol. 42, p.675 – 680, (2002).
DOI: 10.1016/s0890-6955(02)00005-6
Google Scholar
[18]
Bernados.P. G, Vosniakos.G. C, Predicting surface roughness in machining: a review, International Journal of Machine Tools and Manufacture 43(8) (2003) 833-844.
DOI: 10.1016/s0890-6955(03)00059-2
Google Scholar