Surface Roughness Prediction in the End Milling Parameters of Aluminum Nitride Ceramic by Response Surface Methodology

Article Preview

Abstract:

The present experimental study aimed to examine the selected machining parameters on Surface roughness in the machining of alumina nitride ceramic. The influence of cutting speed and feed rate were determined in end milling by using Cubic boron nitride grinding tool. The predictive surface roughness model has been developed by response surface methodology. The response surface contours with respect to input parameters are presented with the help of Design expert software. The adequacy of the model was tested by ANOVA.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Pages:

626-633

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Seiichi Taruta , Ryuji Fujisawa, Kunio Kitajima, Preparation and mechanical properties of machinable alumina/mica composites, Journal of the European Ceramic Society 26 (2006) 1687–1693.

DOI: 10.1016/j.jeurceramsoc.2005.03.258

Google Scholar

[2] Luis.C. J, Puertas. I, Villa. G, Material removal rate and electrode wear study on the EDM of silicon carbide, Journal of Materials Processing Technology 164-165(2005) 889-896.

DOI: 10.1016/j.jmatprotec.2005.02.045

Google Scholar

[3] Malkin S. Ritter JE, Grinding mechanisms and strength degration for ceramics ASME, Journal of engineering for Industry 1989; 111: 2111-18.

Google Scholar

[4] Kovach.J. A, Laurich.M. A, Malkin. S, Srinivasan. S, Bandyopadyay. B, Ziegler.K. R, A feasibility of investigation of high speed, low damage grinding for advanced ceramics, SME fifth international grinding process conference, Vol. 1, SME, (1993).

DOI: 10.2172/755533

Google Scholar

[5] Klocke. F, Verlemann. E, Schippers. C, High speed grinding of ceramics. Machining ofceramics and composites, Marcel Dekker, New York 1999; 119-138.

Google Scholar

[6] Hwang.T. W, Evans.C. J, Whitenon.E. P, Malkin. S, High speed grinding of silicon nitride with electroplated diamond wheels. 1. wear and wheel life, Manufacturing science and engineering, MED-Vol. 10, ASME, 1999 , 431-441.

DOI: 10.1115/imece1999-0701

Google Scholar

[7] Hwang.T. W, Evans.C. J, Whitenon.E. P, Malkin. S, High speed grinding of silicon nitride with electroplated diamond wheels. 2. Wheel topography and grinding mechanisms , Manufacturing science and engineering, MED-Vol. 10, ASME, 1999 , 443-452.

DOI: 10.1115/imece1999-0702

Google Scholar

[8] Hwang.T. W, Evans.C. J, Malkin. S, An investigation of high speed grinding with electroplated diamond wheels, Annals of CIRP 49(1) (2000) 245-248.

DOI: 10.1016/s0007-8506(07)62938-2

Google Scholar

[9] Hwang. H, Liu.Y. C, Experimental investigation of machining characteristics and removal mechanisms of advanced ceramics in high speed grinding, International Journal of Machine Tools and Manufacture 43, 2003, 811-823.

DOI: 10.1016/s0890-6955(03)00050-6

Google Scholar

[10] Chwan-Huei Tsai, Hong-Wen Chen, Laser cutting of thick ceramic substrates by controlled fracture technique, Journal of Materials Processing Technology 136 (2003), 166–173.

DOI: 10.1016/s0924-0136(03)00134-1

Google Scholar

[11] Rajurkar.K. P, Wang.Z. Y, Kuppattan. A, Micro removal of ceramic material (AL2O3) in the precision ultrasonic machining, Precision Engineering 23, 1999, 73-78.

DOI: 10.1016/s0141-6359(98)00026-9

Google Scholar

[12] Rahaman. M, Senthil Kumar. A, Prakash J.R. S, Micro milling of pure Copper, Journal of materials Processing Technology 116(2001) 39-43.

DOI: 10.1016/s0924-0136(01)00848-2

Google Scholar

[13] Takacs. M, Vero. B, Meszaros. I, Micro milling of metallic materials, Journal of Materials processing Technology 138(2003) 152-155.

Google Scholar

[14] Wang. W, Kweon.S. H, Yang.S. H, A study on roughness of Micro end milled surface produced by miniature machine tool, Journal of Processing Technology 162-163(2005) 702-708.

DOI: 10.1016/j.jmatprotec.2005.02.141

Google Scholar

[15] Sinan Filiz, Caroline. M Conely, Mathew. B Wasserman, O Burak Ozdoganlar, An experimental investigation of micro- machinability of Copper 101 using tungsten carbide micro-end mills, International Journal of Machine Tools and Manufacture 47(2007).

DOI: 10.1016/j.ijmachtools.2006.09.024

Google Scholar

[16] Yang.J. L, Chen.J. C, A systematic approach for identifying optimum surface roughness performance in end milling operations, Industrial Technology 17(2)(2001).

Google Scholar

[17] Suresh.P. V, Venkateswara Rao.P., Deshmukh.S. D, A genetic algorithm approach for optimization of surface roughness prediction model, International Journal of Machine tool and Manufacture, Vol. 42, p.675 – 680, (2002).

DOI: 10.1016/s0890-6955(02)00005-6

Google Scholar

[18] Bernados.P. G, Vosniakos.G. C, Predicting surface roughness in machining: a review, International Journal of Machine Tools and Manufacture 43(8) (2003) 833-844.

DOI: 10.1016/s0890-6955(03)00059-2

Google Scholar