[1]
Magee, C.L., 1966. Transformation kinetics, microplasticity and ageing of martensite in Fe–3l–Ni, Ph.D. Thesis, Carnegie Institute of Technologie University, Pittsburgh, PA.
Google Scholar
[2]
Greenwood, G.W., Johnson, R.H., 1965. The deformation of metals under small stresses during phase transformations. Proc. Roy. Soc. Lond. A 283, 403.
DOI: 10.1098/rspa.1965.0029
Google Scholar
[3]
Leblond, J.B., 1989. Mathematical modelling of transformation plasticity in steels II. Coupling with strain hardening phenomena. Int. J. Plasticity 5, 573–591.
DOI: 10.1016/0749-6419(89)90002-8
Google Scholar
[4]
Taleb, L., Sidoroff, F., 2003. A micromechanical modeling of the Greenwood–Johnson mechanism in transformation induced plasticity. Int. J. Plasticity 19, 1821–1842.
DOI: 10.1016/s0749-6419(03)00020-2
Google Scholar
[5]
Fischer, F.D., Berveiller, M., Tanaka, K., Oberaigner, E.R., 1994. Continuum mechanical aspects of phase transformations in solids. Arch. Appl. Mech. 64, 54.
DOI: 10.1007/bf00789099
Google Scholar
[6]
Olson G.B., Cohen M. Kinetics of strain-induced martensitic transformation. Metallurgical Transactions 1975; 6A: 791–795.
DOI: 10.1007/bf02672301
Google Scholar
[7]
Stringfellow R.G., Parks D.M., Olson G.B., Constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metallurgica Materialia, 1992, 40( 7), 1703-1716.
DOI: 10.1016/0956-7151(92)90114-t
Google Scholar
[8]
Tomita Y., Iwamoto T., Computational prediction of deformation behavior of TRIP steels under cyclic loading. International Journal of Mechanical Sciences, 2001, 43 (9): 2017-(2034).
DOI: 10.1016/s0020-7403(01)00026-1
Google Scholar
[9]
Dan W.J., Zhang W.G., Li S.H., Lin Z.Q., A model for strain induced martensitic transformation of TRIP steel with strain rate, Computational Materials Science, Volume 40, Issue 1, July 2007: 101-107.
DOI: 10.1016/j.commatsci.2006.11.006
Google Scholar
[10]
Saito K., Ikeda Sh., Makii K., et al., Strain rate and temperature dependent plastic deformation behavior of low-carbon TRIP steel, Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, v 71, n 3, March, 2005, pp.465-471.
DOI: 10.1299/kikaia.71.465
Google Scholar
[11]
Choi I.D., Bruce D.M., Kim S.J., et al., Deformation behavior of low carbon TRIP sheet steels at high strain rates, ISIJ International, 42(12), 2002: 1483-1489.
DOI: 10.2355/isijinternational.42.1483
Google Scholar
[12]
Iwamoto T., Sawa T., Sasaki M., Macroscopic constitutive modeling of TRIP steel using green function and computational simulation of its deformation behavior, Zairyo/Journal of the Society of Materials Science, Japan, 53(12), 2004: 1365-1370.
DOI: 10.2472/jsms.53.1365
Google Scholar
[13]
Choi H., Koç M. and Ni J., A study on the analytical modeling for warm hydro-mechanical deep drawing of lightweight materials, International Journal of Machine Tools and Manufacture, Volume 47, Issue 11, September 2007: 1752-1766.
DOI: 10.1016/j.ijmachtools.2006.12.005
Google Scholar
[14]
Takiguchi M. and Yoshida F., Analysis of plastic bending of adhesive-bonded sheet metals taking account of viscoplasticity of adhesive, Journal of Materials Processing Technology, Volume 140, Issues 1-3, 22 September 2003: 441-446.
DOI: 10.1016/s0924-0136(03)00744-1
Google Scholar
[15]
Manabe K., Koyama H., Yoshihara S., et al., Development of a combination punch speed and blank-holder fuzzy control system for the deep-drawing process, Journal of Materials Processing Technology, Volumes 125-126, 9 September 2002: 440-445.
DOI: 10.1016/s0924-0136(02)00363-1
Google Scholar
[16]
Miller M.P., McDowell D.L., Modelling large strain multiaxial effects in FCC polycrystals. International Journal of Plasticity 1996; 12: 875–902.
DOI: 10.1016/s0749-6419(96)00032-0
Google Scholar
[17]
Dan W.J., 2008, STUDY ON CONSTITUTIVE MODEL WITH TRIP BEHAVIOR OF HIGH STRENGTH AUTO SHEET AND ITS HARDENING PROPERTIES. Ph.D. Thesis, Shanghai JiaoTong University, Shanghai, China. (In chinese).
Google Scholar