Experimental Study of the Silicon Start-up Heating and Melting Process in an Inductive Cold Crucible

Article Preview

Abstract:

The electromagnetic continuous pulling is a newly growth technology as a promising process for silicon preparation, start-up heating is necessary for the semiconductivity of silicon at room temperature. Investigations were carried out to study this process in a square crucible with the frequency of 50kHz, details of the experimental procedure were given, the affecting factors, electrical performance and heat explosion problems during the process were measured and discussed. The results indicated that the best conditions for the preheating were the central position of the base in the coil, the higher power and the proper primary mass of silicon setting. The electrical performance indirectly showed the pool conditions and so it can be effectively used to control the melting operation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Pages:

756-762

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bei Wu, Nathan Stoddard, Ronghui Ma, Roger Clark. Journal of Crystal Growth, Vol. 310(2008), pp.2178-2184.

Google Scholar

[2] Hitoshi Matsuo, R. Bairava Ganesh, Satoshi Nakano, Lijun Liu, Yoshihiro Kangawa, Koji Arafune, Yoshio Ohshita, Masafumi Yamaguchi, Koichi Kakimoto. Journal of Crystal Growth, Vol. 310(2008), pp.4666-4671.

DOI: 10.1016/j.jcrysgro.2008.08.045

Google Scholar

[3] Francis Durand. Solar Energy Materials and Solar Cells, Vol. 72(2002), pp.125-132.

Google Scholar

[4] E. Ehret. Solar Energy Materials and Solar Cells, Vol. 53(1998), pp.313-327.

Google Scholar

[5] J. Boudaden, M. Loghmarti, D. Ballutaud. Solar Energy Materials and Solar Cells, Vol. 65(2001), pp.517-523.

DOI: 10.1016/s0927-0248(00)00135-5

Google Scholar

[6] I. Perichaud, S. Martinuzzi, F. Durand. Solar Energy Materials and Solar Cells, 2002, 72: 101-107.

DOI: 10.1016/s0927-0248(01)00155-6

Google Scholar

[7] Gilles Dour, Eric Ehret, A. Laugier, etc. Journal of Crystal Growth, Vol. 193(1998), pp.230-240.

Google Scholar

[8] J. Boudaden, R. Monna, M. Loghmarti, J.C. Muller. Solar Energy Materials and Solar Cells. Vol. 72(2002), pp.381-387.

DOI: 10.1016/s0927-0248(01)00186-6

Google Scholar

[9] G. Sugilal. Applied Thermal Engineering, Vol. 28(2008), p.1952-(1961).

Google Scholar

[10] G. Sugilal. International Journal of Thermal Sciences, Vol. 47(2008), pp.918-925.

Google Scholar

[11] S.V. Stefanovsky, A.G. Ptashkin, O.A. Knyazev, S.A. Dmitriev, S.V. Yudintsev, B.S. Nikonov. Journal of Alloys and Compounds, Vol. 444-445(2007), pp.438-442.

DOI: 10.1016/j.jallcom.2007.01.067

Google Scholar

[12] S. W. Hong, B. T. Min, J. H. Song, H. D. Kim. Materials Science and Engineering A, Vol. 357(2003), pp.297-303.

Google Scholar

[13] J.H. Song, B.T. Min, J.H. Kim, H.W. Kim, S.W. Hong, S.H. Chung. International Communications in Heat and Mass Transfer, Vol. 32(2005), pp.1325-1336.

DOI: 10.1016/j.icheatmasstransfer.2005.07.015

Google Scholar

[14] C.J. Jing, T. Tsukada, M. Hozawa, K. Shimamura, N. Ichinose, T. Shishido. Journal of Crystal Growth, Vol. 265(2004), pp.505-517.

DOI: 10.1016/j.jcrysgro.2004.02.078

Google Scholar

[15] Housheng Jia, Bin Meng. The preparation of refractory materials with cold crucible technique. BeiJing, Metallurgical industry press, 2006(in chinese).

Google Scholar