Numerical Simulations of the Spall Damage of the Target Material Induced by Laser Driven Flyer Impacting

Article Preview

Abstract:

The spall phenomenon has been a subject of constant interest for many years, and it is still widely investigated in various ways including the experiment. This paper uses the method of smoothed particle hydrodynamics and the model of Johnson-Cook tensile cumulative damage to simulate the process of spall induced by the laser-driven flyer loading. Using this method, some numerical simulation results can be obtained, like the different time of the 2D image of damage distribution and the rear free surface velocity histories of target material. These results could offer some useful messages for the study on spall damage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

1305-1312

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Verker, N. Eliaz, I. Gouzman, S. Eliezer, M. Fraenkel, S. Maman, F. Beckmann, K. Pranzas, E. Grossman:Acta Materialia Vol. 52 (2004),p.5539.

DOI: 10.1016/j.actamat.2004.08.013

Google Scholar

[2] Gong ZZ, Dai F, Cao Y, et al: Nuclear instruments and methods in physics research section B-Beam interaction with materials and atoms Vol. 267(2009), p.3252.

Google Scholar

[3] S. Katz, E. Grossman, I. Gouzman, M. Murat, E. Wiesel, H.D. Wagner: International Journal of Impact Engineering Vol. 35(2008), p.1606.

DOI: 10.1016/j.ijimpeng.2008.07.032

Google Scholar

[4] Katz S, Grossman E, Gouzman I, et al: Journal of spacecraft and rockets Vol. 46(2009) , p.230.

Google Scholar

[5] Liu HX, Shen ZB, Wang X, et al: Journal of applied physics Vol. 106 (2009), no. 063107.

Google Scholar

[6] T. de Rességuier,H. He and P Berterretche: International Journal of Impact Engineering Vol. 31 (2005), p.945.

Google Scholar

[7] Loïc Signor, Thibaut de Rességuier, André Dragon, Gilles Roy, Alain Fanget, Matthieu Faessel: International Journal of Impact Engineering Vol. 37( 2010), p.887.

DOI: 10.1016/j.ijimpeng.2010.03.001

Google Scholar

[8] Zhiping Tang, Xinzeng Li, Guangquan Zhou, XiangLi Liao: Chinese Science Bulletin Vol. 22 (1992), p.2100 (In Chinese).

Google Scholar

[9] Zhang Wanjia, Wang Wu, Zen Yuanjin, Song Chunxiang: Chinese Journal of High Pressure Physics Vol. 8 (1994), p.205 (In Chinese).

Google Scholar

[10] Wang Yong-gang, M. Boustie, HE Hong-liang, T. Sekine, et al, High power laser & Particle beams Vol. 17 (2005) , no. 0720966205 (In Chinese).

Google Scholar

[11] Gingold, R. A., and Monaghan, J. : Mon. Not. R. Astron. Soc Vol. 181(1977), p.375.

Google Scholar

[12] Lucy, L. B: Astron. J Vol. 88(1977), p.1013.

Google Scholar

[13] Liu, M. B., Liu, G. R., Lam, K. Y., and Zong, Z: Shock Waves Vol. 12(2003), p.509.

Google Scholar

[14] Johnson, G. R., Stryk, R. A., and Neissel, S. R:Comput. Methods Appl. Mech. Eng Vol. 139 (1996), p.347.

Google Scholar

[15] Ellero, M., and Tanner, R. I. :J. Non-Newtonian Fluid Mech Vol. 132 (2005), p.61.

Google Scholar

[16] Hallquist J O: LS-DYNA theoretical manual (Livermoresoftware Technology Corporation, USA 1998).

Google Scholar

[17] G. R. Johnson and W. H. Cook: Proceedings of the Seventh International Symposium on Ballistics (1983), p.541. (unpublished).

Google Scholar

[18] Eftis J, Carrasco C, Osequeda R A: Int J of Plasticity Vol. 19(2003), p.1321.

Google Scholar

[19] Børvik T, Hopperstad O S, Berstad T, et al: Int J of Impact Engng Vol. 27(2002), p.37.

Google Scholar

[20] Chen D N, Sarumi M, AL-Hassani S T S, et al: Wear Vol. 205 (1997), p.32.

Google Scholar

[21] Lawrence R J , Trott W M: International Journal of Impact Engineering Vol. 14(1993), p.439.

Google Scholar

[22] Gurney R: The initial velocity of fragments from bombs , shells , and grenades(Report No. 405 , Ballistic Research laboratory , Aberdeen , MD , 1943).

Google Scholar