Influence of Carbon Content on the Qualities of Oxy-Fuel Float Glass

Article Preview

Abstract:

To optimize production technology of oxy-fuel float glass, a series of float glass with lower sulphate contents and 1%~5% carbon contents in glass batch were prepared under simulated oxy-fuel melting conditions. Infrared spectroscopy,thermal dilatometer and microscope were used to study water content and its state in glass melts, the change of coefficient of thermal expansion of glass, the glass softening temperature and transition temperature, and the number of bubbles in glass, respectively. The results show that the change of carbon content will slightly changes the water content, thermo properties of glass and the number of bubbles in glass. With the increase of carbon content, the coefficient of thermal expansion and the water content of glass generally decrease, while the number of bubbles, the softening temperature and the glass transition temperature increase. When the content of sulphate is 2%, the glass with 2% carbon content has the biggest water content and the best fining effect.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

1559-1563

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Tsujimura, X. Xue, M. Kanzaki and M.J. Walter: Geochim. Cosmochim. Acta. Vol. 68 (2004), p.5081.

Google Scholar

[2] J. Matyas, and P.R. Hrma, in: PNNL-15175, Pacific Northwest National Laboratory, Richland, WA. (2005).

Google Scholar

[3] Arkosiova, J. Klouzek, L. Nemec: Ceramics − Silikaty Vol. 3-52 (2008), p.155.

Google Scholar

[4] M. Liska, D. Galusek, R. Klement and V. Petruskova: Advanced Materials Research Vol. 39-40 (2008), p.413.

Google Scholar

[5] R.G.C. Beerkens, and J. van der Schaaf: J. Am. Ceram. Soc. Vol. 1-89 (2006), p.24.

Google Scholar

[6] J. Klouzek, M. Arkosiova, and L. Nemec: Ceramics-Silikaty Vol. 3-50 (2006), p.134.

Google Scholar

[7] J. Deubener, H. Behrens, R. Muller, et al.:J. Non-Cryst. Solids Vol. 354(2008), p.4713.

Google Scholar

[8] H. Kobayashi, in: Proc. of the XX International Congress on Glass (ICG), Kyoto-Japan, (2004), p.85.

Google Scholar

[9] K.M. Davis, A. Agarwal, M. Tomozawa, et al.: J. Non-Cryst. Solids Vol. 203 (1996), P. 27.

Google Scholar

[10] Fu-xi GAN, in: Modern Glass Science and Technology (the second volume). Shanghai: Shanghai Science Press, (1990) (in Chinese).

Google Scholar

[11] A.M. Efimov, V.G. Pogareva, and A.V. Shashkin: J. Non-Cryst. Solids. Vol. 332(2003), p.93.

Google Scholar

[12] A.M. Efimov and V.G. Pogareva: Chemical Geology. Vol. 229(2006), p.198.

Google Scholar

[13] M.G. Mesko, P. A. Schader, and J. E. Shelby: Phys. Chem. Glasses Vol. 6-43(2002), p.283.

Google Scholar

[14] H. Scholze: Naturwissenschaften. Vol. 47(1960), p.226 (in German).

Google Scholar

[15] E.M. Stolper: Contrib. Mineral. Petrol. Vol. 81(1982), p.1.

Google Scholar

[16] S.C. Kohn, R. Dupree, and M.E. Smith: Nature. Vol. 337(1989), p.539.

Google Scholar

[17] G. Hetherington, and K.H. Jack: Phys. Chem. Glasses. Vol. 3(1962), p.129.

Google Scholar

[18] J. Deubener, R. Muller, H. Behrens, et al.: J. Non-Cryst. Solids Vol. 330(2003), p.268.

Google Scholar