Synthesis of LiNi1/3Co1/3Mn1/3O2 Composite Powders by Solid State Reaction

Article Preview

Abstract:

A mixture of Li2CO3, NiO, Co2O3 and MnO2 with a molar ratio was introduced in the mixed high energy ball milling, LiNi1/3Co1/3Mn1/3O2 was prepared by solid state phase using mechanochemical activation which has highly reactive materials. The structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 were analisised by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and galvanotactic charge-discharge test. Charge-discharge test results show that when the the LiNi1/3Co1/3Mn1/3O2 cathode was prepared by wet milling 10h between 2.8 V and 4.4V at a current of 0.5C rate, the initial discharge capacity is 135.1mAh/g, the capacity retention rate of 93.26% after 20 cycles. When nLi: n (Ni + Co + Mn) = 1.1, the samples sintered 20h at 850 °C, the first discharge capacity is 148.5 mAh/g, and the capacity retention rate is 94.88% after 40 cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-272

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. W. Zeng: Journal of Power Sources Vol. 183(2008), p.316–324.

Google Scholar

[2] C. X. Ding, Q, S, Meng, L. Wang and C. H. Chen: Materials Research Bulletin Vol. 44(2009), p.492–498.

Google Scholar

[3] H. J. Li, G. Chen, B. Zhang and J. Xu: Solid State Communications , Vol. 146(2008), p.115–120.

Google Scholar

[4] J. T. Son and E. Cairns: Korean J. Chem. Eng. Vol. 24(2007), p.888–891.

Google Scholar

[5] H. Zhong and H. Xu: Chemistry technology Vol. 65(2007), p.147–151.

Google Scholar

[6] T. Ohzuku and Y. Makimura: Chem. Lett Vol. 30(2001), p.642–644.

Google Scholar

[7] T. H. Cho, S. M. Park, M. Yoshio, T. Hirai and Y. Hideshima: Journal of Power Sources Vol. 142(2005), p.306–312.

Google Scholar

[8] J. T. Su, Y. C. Su, Z. G. Lai and H. H. Fang: J. Cent. South Univ. (Science and Technology) Vol. 39(2008), p.221–227.

Google Scholar

[9] C. Deng, L. Liu, W. Zhou, K. Sun and D. Sun: Electrochimica Acta Vol. 53 (2008), p.2441–2447.

Google Scholar

[10] Y. H. Ding, P. Zhang and D. S. Gao: Journal of Alloys and Compounds Vol. 456 (2008), p.344–347.

Google Scholar

[11] Z. R. Chang, Z. J. Chen, F. Wu, H. W. Tang, Z. H. Zhu, X. Z. Yuan and H. J. Wang: Journal of Power Sources Vol. 185(2008), p.1408–1414.

Google Scholar

[12] Y. H. Ding, P. Zhang, Z. L. Long, Y. Jiang and D. S. Gao: Journal of Alloys and Compounds Vol. 462(2008), p.340–342.

Google Scholar

[13] R. Guo, P. F. Shi, X. Q. Cheng and C. Y. Du: Journal of Alloys and Compounds Vol. 473 (2009), p.53–59.

Google Scholar

[14] Z. R. Chang, Z. J. Chen, F. Wu, H. W. Tang, Z. H. Zhu, X. Z. Yuan and H. J. Wang: Electrochimica Acta Vol. 53(2008), p.5927–5933.

Google Scholar

[15] C. H. Lu and Y. K. Lin: Journal of Power Sources Vol. 198(2009), p.353–358.

Google Scholar

[16] T.K. Fey, C. S. Chang and T. P. Kumar: J Solid State Electrochem Vol. 14(2010), p.17–26.

Google Scholar

[17] J. H. Yoon, H. J. Bang, J. Prakash and Y. K. Sun: Materials Chemistry and Physics Vol. 110(2008), p.222–227.

Google Scholar

[18] L. Q. Zhang,X. Q. Wang and T. Muta: Journal of Power Sources Vol. 162(2006), p.629–635.

Google Scholar

[19] Y. J. Huang, D. S. Gao, Z. H. Li, G. T. Lei and G. Y. Su: Chinese journal of inorganic chemistry Vol. 23(2007), p.466–472.

Google Scholar

[20] K. M. Shaju, R. G. V. Subba and B. V. R. Chowdari: Electrochim. Acta Vol. 48(2002), p.145–151.

Google Scholar