[1]
Y. Wu: Axisymmetric Penetration of RHA steel targets by cylindrical tubes, Proceedings of the 1995 International Conference on Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, 1995, 337-344.
Google Scholar
[2]
R. J. Dowding, M. C. Hogwood, L. Wong, et al. Tungsten alloy properties relevant to kinetic energy penetrator performance. In: Bose A, Dowing R J, eds. Proceedings of the second international conference on tungsten and refractory metals. Mclean, VA, USA, 1994, 3-10.
Google Scholar
[3]
N. L. Rupert, F. I. Grace, W. Huang, L. E. Murr, C. S. Niou: Energy partitioning and microstructural observations related to perforation of titanium and steel targets. International Journal of Impact Engineering, 1997, 20: 685-696.
DOI: 10.1016/s0734-743x(97)87455-6
Google Scholar
[4]
Zhigang Wei, Jilin Yu, Shisheng Hu, Yongchi Li: Influence of microstructure on adiabatic shear localization of pre-twisted tungsten heavy alloys. International Journal of Impact Engineering, 2000, 24: 747-758.
DOI: 10.1016/s0734-743x(00)00011-7
Google Scholar
[5]
L. M. Rick, B. P Michael, D. Thomas: Penetration of HSLA-100 steel with tungsten carbide spheres at striking. International Journal of Impact Engineering, 2004, 30: 505-520.
DOI: 10.1016/s0734-743x(03)00080-0
Google Scholar
[6]
B. Lan, H.M. Wen: Numerical Simulation and Analysis of the Penetration of Tungsten-Alloy Long Rod into Semi-Infinite Armor Steel Targets. Chinese Journal of High Pressure Physics, 2008 , 22 (3) : 245-252. (in Chinese).
Google Scholar
[7]
Huang Chenguang, Dong Yongxiang, Duan Zhupiing: Dynamic behaviors of tungsten alloy and its dependence on Micro- and Mesoscopic structures. Advances in Mechanics, 2003, 33(4): 433-445. (in Chinese).
Google Scholar
[8]
K. T. Ramesh, R. S. Coates: Microstructure influences on the dynamic response of tungsten heavy alloys. Metallurgical Transactions A, 1992, 23A: 2625-2630.
Google Scholar
[9]
G. M. German: Critical developments in tungsten heavy alloy. In: Bose A, Dowing R J, eds. Proceedings of the first international conference on tungsten and tungsten alloys. Virginia, USA, 1992, 3-14.
Google Scholar
[10]
O. L. Valerio-flores, L. E. Murr, V. S. Hernandez, S. A. Quinones: Observations and simulations of the low velocity-to-hypervelocity impact crater transition for a range of penetrator densities into thick aluminum targets. Journal of Materials Science, 2004, 39: 6271-6289.
DOI: 10.1023/b:jmsc.0000043597.72588.d1
Google Scholar
[11]
Dong Kuk Kim, Sunghak Lee, Ho Jin Ryu, Soon Hyunghong: Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying. Metallurgical and Materials Transactions A, 2000, 31A: 2475-2489.
DOI: 10.1007/s11661-000-0193-0
Google Scholar
[12]
Anderson C. E., Orphal D. L. Analysis of the Terminal Phase of Penetration. International Journal of Impact Engineering, 2003, 29: 69-80.
Google Scholar
[13]
D. N. Chen , G. Q. Liu , Y. Y. Yu: The Constitutive Relationship between High Pressure-High Strain Rate and Low Pressure-High Strain Rate Experiment. Chinese Journal of High Pressure Physics, 2005, 19(3) : 193-200. (in Chinese).
Google Scholar
[14]
J L. ames, E. Charles, J.R. Anderson: Suzanne A. R., John P. R. Penetration erosion phenomenology. International Journal of Impact Engineering, 1996, 18: 565-578.
Google Scholar