Synthesis of Leaf-Shaped α-Fe2O3 Nanoflakes

Article Preview

Abstract:

We report the synthesis of single-crystalline α-Fe2O3 nanoflakes by the oxidation reaction of water vapor through a gas-solid method. The samples are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), micro-Raman spectrometer, and transmission electron microscopy (TEM). As-synthesized nanoflakes have a pseudotriangle morphology: 20-50 nm in thickness, 0.5-1.5 μm in length and base-width. It is observed that vertically aligned arrays of leaf-like α-Fe2O3 grow at the verges of the iron foils. The possible mechanism is discussed to elucidate the formation of α-Fe2O3 nanostructures. The experimental results indicate that water vapor plays an important role in controlling the morphology of the final products.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1006-1011

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. A. El-Sayed: Acc. Chem. Res. Vol. 34 (2001), pp.257-264.

Google Scholar

[2] S. H. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X . Wang and G. X. Li: J. Am. Chem. Soc. Vol. 126 (2004), p.273.

Google Scholar

[3] X. M. Hu, J. C. Yu, J. M. Gong, Q. Li and G. S. Li: Adv. Mater. Vol. 19 (2007), p.2324.

Google Scholar

[4] H. J. Jia, L. D. Sun, F. Luo and X. D. Han: J. Am. Chem. Soc. Vol. 130 (2008), p.16968.

Google Scholar

[5] S. Z. Li, H. Zhang, J. B. Wu, X. Y. Ma and D. R. Yang: Cryst. Growth Des. Vol. 6 (2006), p.351.

Google Scholar

[6] S. Y. Zeng, K. B. Tang, T. W. Li, Z. H. Liang, D. Wang, Y. K. Wang and W. W. Zhou: J. Phys. Chem. C Vol. 112 (2008), p.4836.

Google Scholar

[7] L. L. Li, Y. Chu, Y. Liu and L. H. Dong: J. Phys. Chem. C Vol. 111 (2007), p.2123.

Google Scholar

[8] J. Park, K. J. An, Y. S. Hwang, J. G. Park, H. J. Noh, J. H. Park, N. M. Hwang and T. Hyeon: Nat. Mater. Vol. 3 (2004), p.891.

Google Scholar

[9] Y. Y. Fu, J. Chen and H. Zhang: Chem. Phys, Lett. Vol. 350 (2001), p.491.

Google Scholar

[10] M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao and B. V. R. Chowdari: Adv. Funct. Mater. Vol. 17 (2007), p.2792.

DOI: 10.1002/adfm.200601186

Google Scholar

[11] J. Liang, L. Li, W. M. Song, J. Z. Fang, M. Luo and Y. P. Li: Cryst. Res. Technol. Vol. 45 (2009), p.405.

Google Scholar

[12] X, G. Wen, S. H. Wang, Y. Ding, Z. L. Wang and S. H. Yang: J. Phys. Chem. B Vol. 109 (2005), p.215.

Google Scholar

[13] Z. Zheng, Y. Z. Chen, Z. X. Shen, J. Ma, C. H. Sow, W. Huang and T. Yu: Appl. Phys. A Vol. 89 (2007), p.115.

Google Scholar

[14] P. M. Rao and X. L. Zheng: Nano Lett. Vol. 9 (2009), p.3001.

Google Scholar

[15] D. L. A. de Faria, S. V. Silva and M. T. de Oliveria: J. Raman Spec. Vol. 28 (1997), p.873.

Google Scholar