Kinetics of Order-Disorder Transition of Antiphase Domain Boundary Formed between DO22 Phases: Microscopic Phase-Field Study

Article Preview

Abstract:

Based on the microscopic phase-field model, the precipitation process of Ni75Al4.3V20.7 alloy at 1190K is simulated, and the kinetics of order-disorder transition at antiphase domain boundary (APDB) formed between DO22 (Ni3V) phases is investigated. After the ordered APDB formed by the impingement of growing DO22 (Ni3V) domains, the order-disorder transition at APDB is happened. Accompanied with the enrichment of Ni and Al at the APDB, the ordered APDB transforms into a thin disordered phase layer. The second phase L12 nucleates at the order-disorder interface between DO22 and disordered phases, and grows along the disorder phase layer quickly. The order-disorder transition at the ordered APDB accelerates the nucleation and growth of L12 phase at the APDB. The disordered phase caused by the order-disordered transition can be considered the transient phase during the precipitation process of L12 phase.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

996-1000

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Q. Wang, H.Q. Ye, Curr. Opin. Solid. State. Mater. Sci. Vol. 10(2006), p.26.

Google Scholar

[2] P. L. Williams and Y. Mishin: Acta. Mater. Vol. 57(2009), p.3786.

Google Scholar

[3] M. Tang, W. C. Carter, R. M. Cannon: J. Mater. Sci. Vol. 41(2006), p.7691.

Google Scholar

[4] A. Loiseau: Curr. Opin. Solid. State. Mater. Sci. Vol. 1(1996), p.369.

Google Scholar

[5] M. Tang, W. C. Carter, R. M. Cannon: Phys. Rev. Lett. Vol. 97 (2006), p.075502.

Google Scholar

[6] P. Wynblatt and D Chatain: Mat. Sci. Eng. A Vol495 (2008), p.119.

Google Scholar

[7] B. Straumal and B. baretzky: Interface. Sci. Vol. 12(2004), p.147.

Google Scholar

[8] D. Chatain, E. Rabkin, J. Derenne and J. Bernardini: Acta. Mater. Vol. 49(2001), p.1123.

Google Scholar

[9] C. A. Becker, Y. Mishin and W. J. Boettinger: J. Mater. Sci. Vol. 43(2008), p.3873.

Google Scholar

[10] Y. Mishin: Acta. Mater. Vol. 52(2004), p.1451.

Google Scholar

[11] Y. Mishin, W. J. Boettinger, J. A. Warren and G. B. McFadden: Acta. Mater. Vol. 57(2009), p.3771.

Google Scholar

[12] P. L. Williams and Y. Mishin: Acta. Mater. Vol. 57(2009), p.3786.

Google Scholar

[13] Y. Wang, D. Banerjee, C. C. Su and A. G. Khachaturyan: Acta. Mater. Vol. 46(1998), p.2983.

Google Scholar

[14] A.G. Khachaturyan: Theory of Structural Transformations in Solids, Wiley, New York, (1983).

Google Scholar

[15] R. Poduri and L. Q. Chen: Acta Mater Vol. 46(1998), p.1719.

Google Scholar

[16] C. Pareige and D. Blavette: Scripta Mater. Vol. 44(2001), p.243.

Google Scholar

[17] Y. L. Lu, Z. Chen and Y. X. Wang: Mater Lett. Vol. 62(2008), p.1385.

Google Scholar

[18] H. Zapolsky, C. Pareige, L. Marteau, D. Blavette and Chen: Calphad, Vol. 25(2001), p.125.

DOI: 10.1016/s0364-5916(01)00035-9

Google Scholar

[19] L. Q. Chen and A. G. Khachaturyan: Phys. Rev. B Vol. 46(1992), p.5899.

Google Scholar

[20] J. Ni and B. L. Gu: Phys. Rev. Lett. Vol. 79(1997), p.3922.

Google Scholar