Electrochemical Characteristic of Cr-Based Film Coated 304SS as PEMFC Bipolar Plates

Article Preview

Abstract:

By using electrochemical techniques, the electrochemical characteristic of Cr-based film coated 304 stainless steel (304SS) as proton exchange membrane fuel cell (PEMFC) bipolar plates, which was deposited by cathodic arc deposition technology, was studied. The results indicated that Cr, CrN, (TiCr)N and (TiN+Ti) film could not only decreased the steel’s contact resistance but also improved its corrosion resistance and the fuel cell stack’s performance. Since Cr, (CrN) and (TiCrN) film were more compact than (TiN+Ti) film, which contained the oxides of Ti, as bipolar plates, the performance for all film change in the following order: Cr film ≈(CrN) film ≈ (TiCrN) film >(TiN+Ti) film.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1469-1475

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Paola, S. Supramaniam: J. Power Sources Vol. 102 (2001), p.242.

Google Scholar

[2] C. Paola, S. Supramaniam: J. Power Sources Vol. 102 (2001), p.253.

Google Scholar

[3] B.O. Isa, K. Randy, and R. Richard: J. Power Sources Vol. 109 (2002), p.71.

Google Scholar

[4] Wolf Vielstich, Arnold Lamm and Hubert Gasteiger, Handbook of Fuel Cell-Fundamentals, Technology and Applications. Volume 3: Fuel Cell Technology and Application (John Wiley & Sons 2003).

DOI: 10.1002/cphc.200490023

Google Scholar

[5] [ S.J. Lee, C.H. Huang, and Y.P. Chen: Journal of Materials Processing Technology Vol. 1409 (2003), p.688.

Google Scholar

[6] D.R. Hodgson, B. May, P.L. Adcock, and D.P. Davies: J. Power Sources Vol. 96 (2001), p.233.

Google Scholar

[7] D.P. Davies, P.L. Adcock, M. Turpin, and S.J. Rowen: J. Power Sources Vol. 86 (2000), p.237.

Google Scholar

[8] H.L. Wang, J.A. Turner: J. Power Sources Vol. 128 (2004), p.193.

Google Scholar

[9] M.P. Brady, K. Weisbrod, C. Zawodzinski, I. paulauskas, R.A. Buchanan, and L.R. Walker: Electrochem. Solid-State Lett. Vol. 5 (2002), p. A245.

DOI: 10.1149/1.1509561

Google Scholar

[10] J. Wind, R. Späh, W. Kaiser, and G. Böhm: J. Power Sources Vol. 105 (2002), p.256.

Google Scholar

[11] H. Wang, M.P. Brady, G. Teeter, and J.A. Turner: J. Power Sources Vol. 138 (2004), p.86.

Google Scholar

[12] H. Wang, M.P. Brady, K.L. More, H.M. Meyer III, and J.A. Turner: J. Power Sources Vol. 138 (2004), p.79.

Google Scholar

[13] L. Ma, S. Warthesen, and D.A. Shores: Journal of New Materials for Electrochemical Systems Vol. 3 (2000), p.221.

Google Scholar

[14] M.C. Li, C.L. Zeng, H.C. Lin, and C.N. Cao: British Corrosion Journal Vol. 36 (2001), p.179.

Google Scholar

[15] M.C. Li, S.Z. Luo, and C.L. Zeng: Corrosion Sciences Vol. 46 (2004), p.1369.

Google Scholar

[16] M.C. Li, C.L. Zeng, S.Z. Luo, J.N. Shen, and C.N. Cao: Electrochimica Acta Vol. 48 (2003), p.1735.

Google Scholar

[17] R.L. Borup, N.E. Vanderborgh: Proceedings of the 1995 MRS Spring Meeting, San Francisco, USA (1995).

Google Scholar

[18] Q.G. Zhou, X.D. Bai, X.W. Chen, D.Q. Peng, Y.H. Ling, and D.R. Wang: Applied Surface Science Vol. 211 (2003), p.293.

Google Scholar

[19] M.A.M. Ibrahim, S.F. Korablov, and M. Yoshimura: Corrosion Sciences Vol. 44 (2002), p.815.

Google Scholar

[20] L. Cunha, M. Andritschky, L. Rebouta, and K. Pischow: Surface and Coatings Technology Vol. 16 (1999), p.1152.

DOI: 10.1016/s0257-8972(99)00270-4

Google Scholar

[21] C. Liu, Q. Bi, and A. Matthews: Corrosion Sciences Vol. 43 (2001), p. (1953).

Google Scholar