[1]
[U.S. ]Edward A. laws, et al., Yu G, Zhang ZL, et al. Translation. Introduction to Water Pollution. Beijing: Science Press, 2003, 57-65.
Google Scholar
[2]
Bruno Tassin, Brigitte Vincon Leite. Forecasting of water quality in lakes: A predictive use of a one dimensional model. Application to Lake Bourget (Savoie, France). Hydrobiologia, 1998, 373/374: 47-60.
DOI: 10.1007/978-94-011-5266-2_4
Google Scholar
[3]
Wei HY, Chai LH. Non-linear dynamic characteristics of phosphorus cycle and eutrophication. Journal of Lake Sciences, 2006, 18(6): 557-564.
Google Scholar
[4]
R. Milo, S. Shen-Orr, S. Itzkovitz et al. Network Motifs: Simple Building Blocks of Complex Networks[J]. Science, 2002, 298(10): 824-827.
DOI: 10.1126/science.298.5594.824
Google Scholar
[5]
Chai LH, Li HB. A new theoretical analysis on organizing principles of water supply networks. Journal of Water Supply, 2007(in press).
Google Scholar
[6]
Jogensen SE. State-of-the-art of ecological modeling with emphasis on development of structural dynamic models[J]. Ecological Modeling, 1999, 120: 75-96.
DOI: 10.1016/s0304-3800(99)00093-9
Google Scholar
[7]
Jing Xu. OVERVIEW OF THE KUNMING INTERNATIONAL WORKSHOP ON THE RESTORATION AND MANAGEMENT OF EUTROPHICATED LAKES [J]. Yunnan Geographic Environment Research. 2002, 14(2): 94-98.
Google Scholar
[8]
FENG Qing-yi, Chai LH. Maximum flux principle: a new method of multivariate statistical analysis and its applications [J]. Journal of Tianjin University of Technology. 2009, 25(1): 15-19.
Google Scholar
[9]
Chai LH. Statistical dynamic features of sludge drying systems. Int. J. Thermal Science, 2007(in press).
Google Scholar
[10]
Wei HY, Chai LH. New Eutrophication Model for Lakes Based on Maximum Flux Principle [J]. Science & Technology Review. 2007, 25(2): 54-59.
Google Scholar
[11]
Huo C H, Chai L H. Physical principles and simulations on the structural evolution of Eco-Industrial systems[J]. The Journal of Cleaner Production, 2008, 16(18): 1995-(2005).
DOI: 10.1016/j.jclepro.2008.02.013
Google Scholar