Removal Efficiency of Hazardous Material in Cyclohexanone Production Wastewater Applying Anaerobic Upflow Bed Filter

Article Preview

Abstract:

The cyclohexanone production wastewater includes hazardous material such as cyclohexanone and cyclohexane which can harm the vessel of human body resulting in coagulation necrosis of viscera and brain. Our experiment choosed the cyclohexanone production wastewater to be investigated, and used the self-made anaerobic upflow bed filter (UBF) to deal with it. We try to find the optimal operational parameters which can make the degradation of hazardous materials maximizing. The COD removal efficiency was decreasing with the COD of influent’s increasing in starting stage, the shock load made the microbe in UBF can’t adapt the high VLR temporarily. In the running stage, the anaerobic sludge in UBF was incompact and the settleability of sludge was not very well. As the UBF running, the granular sludge shaped up greatly, the COD removal efficiency kept on 80%. The result showed that the UBF reactor was valid for hazardous material in cyclohexanone production wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1440-1444

Citation:

Online since:

November 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhang P., Yang M., Lu X. et al.: Ultrasonics Vol44(2006),P. e393.

Google Scholar

[2] You K., Mao L., Yin D. et al.: Catalysis Communications Vol9(2008),P. 1521.

Google Scholar

[3] Saxena S., Basak J., Hardia N. et al.: Chemical Engineering Journal Vol132(2007),P. 61.

Google Scholar

[4] Doo E. -H., Lee W. -H., Seo H. -S. et al.: Journal of Biotechnology Vol142(2009),P. 164.

Google Scholar

[5] Cavani F., Ferroni L., Lucarelli C. et al.: Applied Catalysis A: General VolIn Press, Accepted Manuscript.

Google Scholar

[6] Bordoloi A. and Halligudi S. B.: Applied Catalysis A: General Vol379P. 141.

Google Scholar

[7] Gopaul K. P. and Crook M. A.: Clinical Biochemistry Vol39(2006),P. 667.

Google Scholar

[8] David W. S.: Neurologic Clinics Vol18(2000),P. 215.

Google Scholar

[9] Halpern M. J.: Molecular Aspects of Medicine Vol16(1995),P. 509.

Google Scholar

[10] Atta-ur R., Cumulative general subject index volumes 1-30. In Studies in Natural Products Chemistry, Elsevier: 2005; Vol. Volume 31, p.3.

Google Scholar

[11] Hegde S., Schmidt M. and John E. M., Chapter 28 To Market, To Market - 2008. In Annual Reports in Medicinal Chemistry, Academic Press: 2009; Vol. Volume 44, p.577.

DOI: 10.1016/s0065-7743(09)04428-5

Google Scholar

[12] Li J. and Zhang J. Z.: Coordination Chemistry Reviews Vol253(2009),P. 3015.

Google Scholar

[13] Chaudhari K., Bal R., Chandwadkar A. J. et al.: Journal of Molecular Catalysis A: Chemical Vol177(2002),P. 247.

Google Scholar

[14] Yamaguchi Y., Yasutake N. and Nagaoka M.: Journal of Molecular Structure: THEOCHEM Vol639(2003),P. 137.

Google Scholar

[15] Mao D., Lu G. and Chen Q.: Applied Catalysis A: General Vol279(2005),P. 145.

Google Scholar

[16] Adam F., Retnam P. and Iqbal A.: Applied Catalysis A: General Vol357(2009),P. 93.

Google Scholar

[17] Dapurkar S. E., Sakthivel A. and Selvam P.: Journal of Molecular Catalysis A: Chemical Vol223(2004),P. 241.

Google Scholar

[18] SayIlkan H. and Arpa E.: Bioresource Technology Vol93(2004),P. 85.

Google Scholar

[19] Selvam P. and Dapurkar S. E.: Applied Catalysis A: General Vol276(2004),P. 257.

Google Scholar

[20] Tzeng Z. -H., Chen H. -Y., Reddy R. J. et al.: Tetrahedron Vol65(2009),P. 2879.

Google Scholar

[21] Fu Y. -Q., Li Z. -C., Ding L. -N. et al.: Tetrahedron: Asymmetry Vol17(2006),P. 3351.

Google Scholar

[22] Xu W. L., Huang Y. B., Qian J. H. et al.: Separation and Purification Technology Vol41(2005),P. 173.

Google Scholar

[23] Jiang T., Zhao Q., Li M. et al.: Journal of Hazardous Materials Vol159(2008),P. 204.

Google Scholar