Investigation of Material Properties of One-Piece Glass Fiber Post-and-Core Affecting Biomechanical Responses of the Restorative System

Article Preview

Abstract:

This study aimed at investigating the effects of the post material properties on the maximum stress in the root and maximum deformation of the restorative system. Effects of material properties of fiber post on the maximum equivalent stress in the root and the maximum deformation of the restorative system were numerically investigated. Results show that the maximum equivalent stress in the root can be decreased by 8.3% and the maximum deformation of the restorative system decreased by 10% compared with corresponding maximum values if changing Young’s modulus, Shear modulus and Poisson’s ratio in the range studied here. The maximum equivalent stress in the root is more sensitive to Young’s modulus and Poisson’s ratio while the deformation of the restorative system is more seriously affected by the Shear modulus of the post material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1691-1698

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Aquaviva S. Fernandes, Sharat Shetty, Ivy Coutinho. Factors determining post selection-A literature review. J Prosthet Dent Vol. 90(2003), p.556.

Google Scholar

[2] Kerstin bttter, Andrej M. kielbassa. Post-endodontic restorations with adhesively luted fiber-reinforced composite post systems: A review. Am J Dent Vol. 20(2007), p.354.

Google Scholar

[3] Sadek FT, Monticelli F, Goracci C, Tay FR, Cardoso PE, Ferrari M. Bond strength performance of different resin composites used as core materials around fiber posts. Dent Mater Vol. 23 (2007) , pp.95-99.

DOI: 10.1016/j.dental.2005.12.005

Google Scholar

[4] Farrugia CP. Custom ceramic posts and cores: an overview of rationale and a new use for a proven technology. Gen Dent Vol. 56(2008), pp.42-50.

Google Scholar

[5] Akkayan B, Gülmez T. Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent Vol. 87(2002), pp.431-437.

DOI: 10.1067/mpr.2002.123227

Google Scholar

[6] Pegoretti, A., Fambri, L., Zappini, G., Bianchetti, M. Finite element analysis of a glass fibre reinforced composite endodontic post. BIOMATERIALS Vol. 23(2002), p.2667–2682.

DOI: 10.1016/s0142-9612(01)00407-0

Google Scholar

[7] Nakamura T, Ohyama T, Waki T, Kinuta S, Wakabayashi K, Mutobe Y, Takano N, Yatani H. Stress analysis of endodontically treated anterior teeth restored with different types of post material. Dent Mater J Vol. 25(2006), pp.145-150.

DOI: 10.4012/dmj.25.145

Google Scholar

[8] Boschian Pest L, Guidotti S, Pietrabissa R, Gagliani M. Stress distribution in a post-restored tooth using the three-dimensional finite element method. J Oral Rehabil Vol. 33(2006), pp.690-697.

DOI: 10.1111/j.1365-2842.2006.01538.x

Google Scholar

[9] Fernando Zarone, Roberto Sorrentino, Davide Apicella, Bartolomeo Valentino, Marco Ferrari, R. Aversa, A. Apicella. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth a 3D static linear finite elements analysis. Dent Mater Vol. 22(2006).

DOI: 10.1016/j.dental.2005.11.034

Google Scholar

[10] Yu WJ, Kwon TY, Kyung HM, Kim KH. An evaluation of localized debonding between fibre post and root canal wall by finite element simulation. Int Endod J Vol. 39(2006), pp.959-967.

DOI: 10.1111/j.1365-2591.2006.01175.x

Google Scholar

[11] Roberto Sorrentino, Raffaella Aversa, Valeria Ferro, Tommaso Auriemma, Fernando Zarone, Marco Ferrari, Antonio Apicella. Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater Vol. 23(2007).

DOI: 10.1016/j.dental.2006.08.006

Google Scholar

[12] Rashmi V. Uddanwadiker, Pramod M. Padole, and Harshwardhan Arya. Effect of variation of root post in different layers of tooth linear vs nonlinear finite element stress analysis. J Biosci Bioeng Vol. 104(2007), pp.363-370.

DOI: 10.1263/jbb.104.363

Google Scholar

[13] Okamoto K, Ino T, Iwase N, Shimizu E, Suzuki M, Satoh G, Ohkawa S, Fujisawa M. Three-dimensional finite element analysis of stress distribution in composite resin cores with fiber posts of varying diameters. Dent Mater J Vol. 27(2008), pp.49-55.

DOI: 10.4012/dmj.27.49

Google Scholar

[14] Wakabayashi N, Ona M, Suzuki T, Igarashi Y. Nonlinear finite element analyses Advances and challenges in dental applications. J Dent Vol. 36(2008), pp.463-471.

DOI: 10.1016/j.jdent.2008.03.010

Google Scholar

[15] K. Genovese, L. Lamberti, C. Pappalettere. Finite element analysis of a new customized composite post system for endodontically treated teeth. J Biomech Vol. 38(2005), pp.2375-2389.

DOI: 10.1016/j.jbiomech.2004.10.009

Google Scholar

[16] Kong L, Sun Y, Hu K, et al. Selections of the cylinder implant neck taper and implant end fillet for optimal biomechanical properties: a three dimensional finite element analysis. J Biomech Vol. 41(2008), p.1124–1130.

DOI: 10.1016/j.jbiomech.2007.12.013

Google Scholar

[17] Liang Kong, Yingying Sun, Kaijin Hu, et al. Selection of the implant transgingival height for optimal biomechanical properties: a three-dimensional finite element analysis. J Biomech Vol. 47(2009), p.393–398.

DOI: 10.1016/j.bjoms.2008.09.009

Google Scholar

[18] Pascal Magne. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dent Mater Vol. 23(2007), pp.539-548.

DOI: 10.1016/j.dental.2006.03.013

Google Scholar