Supercapacitor from Nitrogen-Doped Carbon Nanotubes

Article Preview

Abstract:

CNTs were treated with hydrazine hydrate and diethylenetriamine, respectively. Scanning electron spectroscopy (SEM) observation showed that the doped CNTs kept the length/diameter ratio of pristine CNTs. X-ray photoelectron spectroscopy (XPS) characterized that nitrogen can be doped to CNTs. XPS analysis further indicated that C/N atomic ratio of CNTs treated by hydrazine hydrate is 95/2, four times of CNTs treated by diethylenetriamine, which is 96/0.5. The hydrophilicity for N-doped CNTs (N-CNTs) is much improved and enhanced by increasing N proportion. As electrode material of supercapacitor, nitrogen functional groups contribute pseudo-Faradic capacitance, but its cyclic performance still need to be improved. Thanks to the good hydrophilicity for N-CNTs that improves the wettability of CNTs for electrolyte; the specific capacitance of N-CNTs is still slightly higher than pristine CNTs after cycling.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1791-1796

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Gu, Y. Wang and G.H. Li: Adv. In Mech. Vol. 32 (2002), p.563.

Google Scholar

[2] M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund: Science of Fullerenes & Carbon Nanotube (Academic Press, San Diego: March 1996).

Google Scholar

[3] M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson: Nature Vol. 381 (1996), p.678.

Google Scholar

[4] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos and M.M.J. Treacy: Phys. Rev. B Vol. 58 (1998), p.14013.

DOI: 10.1103/physrevb.58.14013

Google Scholar

[5] E. Frackowiak, K. Metenier, V. Bertagna and F. Beguin: Appl. Phys. Lett. Vol. 77(2000), p.2421.

DOI: 10.1063/1.1290146

Google Scholar

[6] C.S. Li, D.Z. Wang, X.F. Wang and J. Liang: Carbon Vol. 43 (2005), p.249.

Google Scholar

[7] F. Pico, J.M. Rojo, M.L. Sanjuan, A. Anson, A.M. Benito, M.A. Callejas, W.K. Maser and M.T. Martinez: J. Electrochem. Soc. Vol. 151 (2004), p. A831.

Google Scholar

[8] R.Z. Ma, B.Q. Wei, C.L. Xu, J. Liang and D.H. Wu: J. Tsinghua University (Sci. and Techno. ) Vol. 40 (2000), p.7.

Google Scholar

[9] Q. Xu, Z. Wu and D. Li: J. Xidian University Vol. 29 (2002), p.249.

Google Scholar

[10] D. McClain, J. Wu and N. Tavan: J. Phys. Chem. C Vol. 111: (2007), p.7514.

Google Scholar

[11] M. Freitag, J.C. Tsang and J. Kirtley: Nano Lett. Vol. 6 (2006), p.1425.

Google Scholar

[12] Y. Shiratori, H. Sugime and S. Noda: J. Phys. Chem. C Vol. 112 (2008), p.17974.

Google Scholar

[13] K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai: Science Vol. 323 (2009), p.760.

Google Scholar

[14] Y. Tang, B.L. Allen, D.R. Kauffman and S. Alexander: J. Am. Chem. Soc. Vol. 131 (2009), p.13200.

Google Scholar

[15] P.X. Hou, H. Orikasa, T. Yamazaki, M. Koichi, A. Tomita, N. Setoyama, Y. Fukushima and T. Kyotani: Chem. Mater. Vol. 1 (2005), p.5187.

Google Scholar

[16] C.S. Eduardo, L.U. Florentino and M.S. Emilio: ACS NANO Vol. 3 (2009), p. (1913).

Google Scholar

[17] H. Ago, S. Ohshima, K. Uchida and M. Yumura: J. Phys. Chem. B Vol. 105 (2001), p.10453.

Google Scholar

[18] C.H. Stephen, M.P. Jacinta and P.H. Chi: J. Phys. Chem. C Vol. 113 (2009), p.12976.

Google Scholar

[19] K.A. Fernando, Y. Lin and Y.P. Sun: Langmuir Vol. 20 (2004), p.4777.

Google Scholar