[1]
Mulholland, J.W., Massey, W., Shelton, J.C. : Investigation and quantification of the blood trauma caused by the combined dynamic forces experienced during cardiopulmonary bypass. Perfusion 15, (2000) 485-494.
DOI: 10.1177/026765910001500603
Google Scholar
[2]
Anderson, J.B., Wood, H.G., Allaire, P.E., Bearnson, G., Khanwildar, P.: A computational flow study of the CF3 blood pump. Artificial Organs 24 (2000), 377-385.
DOI: 10.1046/j.1525-1594.2000.06442.x
Google Scholar
[3]
Bludszuweit, C.: Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artificial Organs 19 (1995a), 590-596.
DOI: 10.1111/j.1525-1594.1995.tb02386.x
Google Scholar
[4]
Sukumar, R., Athavale, M., Makhijani, V., Przekwas, A.: Application of computational fluid dynamics techniques to blood pumps. Artificial Organs 20 (1996), 529-533.
DOI: 10.1111/j.1525-1594.1996.tb04475.x
Google Scholar
[5]
Nakamura, S., Ding, W., Smith, W., Golding, L.: Numeric flow simulation for an innovative ventricular assist system secondary impeller. American Society for Artificial Internal Organs 45 (1999), 74-78.
DOI: 10.1097/00002480-199901000-00017
Google Scholar
[6]
Huang, C.R., Fabisiak, W.: A rheological equation characterizing both the time dependent and the steady state viscosity of whole human blood. American Institute of Chemical Engineers—Symposium Series (1978), pp.19-21.
Google Scholar
[7]
Miyazoe, Y., Sawairi, T., Ito, K., et al.: Computational fluid dynamic analyses to establish design process of centrifugal blood pumps. Artificial Organs 22 (1998), 381-385.
DOI: 10.1046/j.1525-1594.1998.06169.x
Google Scholar
[8]
Miyazoe, Y., Sawairi, T., Ito, K., et al.: Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report. Artificial Organs 23 (1999), 762-768.
DOI: 10.1046/j.1525-1594.1999.06418.x
Google Scholar
[9]
Takiura, K., Masuzawa, T., Endo, S., et al.: Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Artificial Organs 22 (1998), 393-398.
DOI: 10.1046/j.1525-1594.1998.06149.x
Google Scholar
[10]
J.W. Mulholland, J.C. Shelton, X.Y. Luo: Blood flow and damage by the roller pumps during cardiopulmonary bypass. Journal of Fluids and Structures 20 (2005) 129-140.
DOI: 10.1016/j.jfluidstructs.2004.10.008
Google Scholar
[11]
Bludszuweit, C.: Model for general blood damage prediction. Artificial Organs 19 (1995b), 583-589.
DOI: 10.1111/j.1525-1594.1995.tb02385.x
Google Scholar
[12]
Fung, Y.C.: In Biomechanics, Mechanical Properties of Living Tissues, Seconded. Springer, Berlin (1993).
Google Scholar
[13]
Marcos Pinotti and Eugenio S. Rosa: Computational Prediction of Hemolysis in a Centrifugal Ventricular Assist Device. Artificial Organs 19 (1995), 267-273.
DOI: 10.1111/j.1525-1594.1995.tb02326.x
Google Scholar
[14]
Kenichi Funamoto, Toshiyuki Hayase and Atsushi Shirai: Two-Dimensional Computational Flow Analysis and Frictional Characteristics Model for Red Blood Cell under Inclined Centrifuge Microscopy. JSME International Journal Series C, Vol. 46, No. 4 (2003).
DOI: 10.1299/jsmec.46.1304
Google Scholar