Transparent Conducting ZnO:Ga Epitaxial Films Prepared on Epi-GaN/Al2O3 (0001) by MOCVD

Article Preview

Abstract:

High-quality Gallium-doped zinc oxide (ZnO:Ga) films have been prepared on epi-GaN/sapphire (0001) substrates by the metalorganic chemical vapour deposition (MOCVD) method. The relative amount of gallium doping was varied from 0 to 8% (atomic ratio). The structural, electrical and optical properties of the ZnO:Ga films have been investigated in detail, as a function of Ga content. All the prepared samples have the wurtzite structure of pure ZnO with a strong (0002) preferred orientation. The microstructure for the surface of films was markedly influenced by the amount of Ga doping. The resistivity decreases continuously with adding Ga content and reaches to the value of 8.4×10-3 Ω•cm at 8%. The average transmittance for the deposited ZnO:Ga samples in the visible range was over 75%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

634-639

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kim, J.S. Horwitz, G. Kushto, A. Piqué, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, J. Appl. Phys, 88 (2000) 6021.

Google Scholar

[2] D.S. Ginley and C. Bright, MRS Bull. 25, 15 (2000).

Google Scholar

[3] J. Ma, F. Ji, H.L. Ma, S.Y. Li, Thin Solid Films 279 (1996) 213.

Google Scholar

[4] W.S. Lan, S.J. Fonash, J. Electron. Mater. 141 (1987) 16.

Google Scholar

[5] W. Copel, U. Lampe, Phys. Rev. B 22 (1980) 6447.

Google Scholar

[6] T. Minami, H. Nato, S. Takata, Jpn. J. Appl. Phys. 24 (1985) L781.

Google Scholar

[7] A.E. Jimenez Gonzalez, J.A. Soto Urneta, Sol. Energy Mater. Sol. Cells 52 (1998) 345.

Google Scholar

[8] X.H. Yu, J. Ma, F. Ji, Y.H. Wang, X.J. Zhang, C.F. Cheng, H.L. Ma. J. Cryst. Growth 274 (2005) 474.

Google Scholar

[9] K.Y. Cheong, N. Muti, Ramanan, Thin Solid Films 410 (2002) 142.

Google Scholar

[10] V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 100, 033713 (2006).

Google Scholar

[11] J.D. Ye, S.L. Gu, S.M. Zhu, S.M. Liu, Y.D. Zheng, R. Zhang, Y. Shi, H.Q. Yu, Y.D. Ye, J. Cryst. Growth 283 (2005) 279.

Google Scholar

[12] T. Makino and Y. Segawa, Appl. Phys. Lett. 85 (2004) 759.

Google Scholar

[13] International Center for Diffraction Data, PDF-2 card 36-1451.

Google Scholar

[14] I.A. Buyanova, X.J. Wang, W.M. Wang, C.W. Tu, W.M. Chen, Superlattices Microstruct 45 (2009) 413.

Google Scholar

[15] J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, ed. J. Chastain, Physical Electronics Division, Perkin-Elmer Corporation (1992).

Google Scholar

[16] J.A. Sans, A. Segura, J.F. Sanchez-royo, V. Barber, M.A. Hernandez-Fenollosa, B. Mari, Superlattices Microstruct 39 (2006) 282.

Google Scholar

[17] A.E. Rakhshani, A. Bumajdad, J. Kokaj, Appl. Phys. A 89, 923 (2007).

Google Scholar

[18] Q.B. Ma, Z.Z. Ye, H.P. He, S.H. Hu, J.R. Wang, L.P. Zhu, Y.Z. Zhang, B.H. Zhao, J. Cryst. Growth, 304 (2007) 64.

Google Scholar

[19] S. Ghosh, A. Sarkar, S. Chaudhuri, A.K. Pal. Thin Solid Films 205 (1991) 64.

Google Scholar

[20] Y.C. Huang, Z.Y. Li, H.H. Chen, W.Y. Uen, S.M. Lan, S.M. Liao, Y.H. Huang, C.T. Ku, M.C. Chen, T.N. Yang, C.C. Chiang, Thin Solid Films 517 (2009) 5537.

DOI: 10.1016/j.tsf.2009.03.194

Google Scholar

[21] E. Burstein, Phys. Rev. 93 (1954) 632.

Google Scholar

[22] B.H. Choi, H.B. IM, J.S. Song, and K.H. Yoon, Thin Solid Films 193, 712 (1990).

Google Scholar