Effects of Cooling Rate on Quasicrystal Microstructures of Mg-Zn-Y Alloys

Article Preview

Abstract:

Mg72.5Zn26Y1.5 quasicrystal alloys were investigated under different solidification conditions. The specimens of Mg-Zn-Y alloys with cooling rates from 13.2K/s to 69.8K/s were gathered by a designed multi-channel temperature acquiring system and then the microstructures and phase evolution of the alloys were analyzed. The results show that the precipitation temperature of icosahedral quasicrystal phase (I-phase) increased with cooling rate increased from 13.2 K/s to 69.8K/s. The microstructure was mainly made up of α-Mg, I-phase and Mg7Zn3 phase. Meanwhile, the quasi-crystalline morphology was significantly different in the experiments. It changed from five (six) petals to the big pentagon with the decreased cooling rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

901-905

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.P. Luo, S.Q. Zhang, Y.L. Tang, et al: Scripta Metal. et Mater. Vol. 28 (1993), pp.1513-1518.

Google Scholar

[2] D. Shechtman, I. Blech, D. Gratias, et al: Phys. Rev. Lett. Vol. 53 (1984), p.1951-(1953).

Google Scholar

[3] A.P. Tsai, A. Inoue, T. Masumoto: Materials Transactions Vol. 30 (1989), pp.463-473.

Google Scholar

[4] J.B. Ok, I.J. Kim, S. Yi, et al: Philos. Mag. Vol. 83 (2003), pp.2359-2369.

Google Scholar

[5] K.Y. Zhang, M. Harmelin, A. Quivy, et al: Mater. Sci. and Eng. A Vol. 99 (1988), pp.385-388.

Google Scholar

[6] Z.H. Huang, S.M. Liang, R.S. Chen, et al: J. Alloys and Compd. Vol. 468 (2009), pp.170-178.

Google Scholar

[7] F. Shi, X.F. Guo, Z.M. Zhang: Chinese J. Mech. Eng. Vol. 39 (2003), pp.138-140(In Chinese).

Google Scholar

[8] A. Langsdorf, F. Ritter, W. Assmus: Philos. Mag. Lett. Vol. 75 (1997), pp.381-387.

Google Scholar

[9] D. Holland-moritz, T. Schenk, V. Simonet, et al: J. Alloys and Compd. Vol. 342 (2002), pp.77-81.

Google Scholar

[10] T. Schenk, D. Holland-Moritz, V. Simonet, et al: Phys. Rev. Lett. Vol. 89 (2002), p.075507.

Google Scholar

[11] K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, et al: Phys. Rev. Lett. Vol. 90 (2003), p.195504.

Google Scholar

[12] Z.F. Wang, W.M. Zhao, H.P. Li, et al: J. Mater. Sci. & Tech. Vol. 26 (2010), pp.27-32.

Google Scholar

[13] Z.F. Wang, W.M. Zhao, B.Y. Hur, et al: China Foundry Vol. 6 (2009), pp.293-299.

Google Scholar

[14] H.Q. HU: Metal Solidification Principle (China Machine Press, Beijing 2000) (In Chinese).

Google Scholar

[15] D.H. Kim, B. Cantor: Scripta Metall. Vol. 23 (1989), pp.1859-1864.

Google Scholar

[16] J.S. Zhang, H.W. Du, W. Liang, et al: J. Alloys and Compd. Vol. 427 (2007), pp.244-250.

Google Scholar

[17] A.P. Tsai, Y. Murakami, A. Niikura: Philos. Mag. A Vol. 80 (2000), pp.1043-1054.

Google Scholar