Effect of Detailed Formations on the In-Plane Shear Capacity of Hairpin Connectors in Precast RC Floor Slabs

Abstract:

Article Preview

Detailed formation of precast floor slab connectors has significant effect on their shear capacity, but there is no such specific provision on it at present. The effects of detailed formations on the shear strength, stiffness and deformation capacity of hairpin connectors(HPC) were studied, through numerical simulation analysis under in-plane shear force. The imbedded depth (d), slug length (h), steel plate thickness (t) and its stickout(s) were taken as parameters. The analysis results show that: ⅰ) the increase of imbedded depth can improve the bearing capacity and stiffness of HPC, but decrease the deformation capacity; ⅱ) with the increase of slug length, the HPC strength, stiffness and deformation capacity raised a lot; ⅲ) the steel plates’ thickness has small effect on the stiffness, but has strong impact on the strength and deformation capacity of HPC. ⅳ) the stickout can affect the initial stiffness and yield strength of HPC slightly, but has a considerable impact on its ultimate strength and deformation capacity. On the basis of analysis, recommendations on formation details of HPC are proposed for design and construction.

Info:

Periodical:

Advanced Materials Research (Volumes 163-167)

Edited by:

Lijuan Li

Pages:

1510-1514

DOI:

10.4028/www.scientific.net/AMR.163-167.1510

Citation:

R. Pang et al., "Effect of Detailed Formations on the In-Plane Shear Capacity of Hairpin Connectors in Precast RC Floor Slabs", Advanced Materials Research, Vols. 163-167, pp. 1510-1514, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.