Effect of Sulfate Ions on the Corrosion Behavior of Steel in Concrete Using Electrochemical Methods

Article Preview

Abstract:

The effect of sulfate ions on the corrosion behavior of steel in ordinary Portland concrete (OPC) and high performance concrete (HPC) were investigated. Steel corrosion was evaluated by means of corrosion potential (Ecorr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and cyclic polarization (CP). The electrochemical results indicated that, compared to the pure chloride solution, the presence of sulfate ions in the chloride solution both reduced the time to corrosion initiation and lead to an increase in corrosion rate of steel in OPC specimens; however, the sulfate ions had negligible effect in HPC specimens. Furthermore, the corrosion rate of steel exposed to chloride solution was higher that to the sulfate solution both in OPC and HPC specimens.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 163-167)

Pages:

3049-3054

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. C. Aitcin: Cem. Concr. Compos Vol. 25 (2003), p.409.

Google Scholar

[2] M. A. El-Gelany: Mater. Struct Vol. 34 (2001), p.426.

Google Scholar

[3] M. E. Ismail and H. R. Soleymani: Can. J. Civ. Eng Vol. 29 (2002), p.863.

Google Scholar

[4] H. R. Soleymani and M. E. Ismail: Cem. Concr. Res Vol. 34 (2004), p. (2037).

Google Scholar

[5] M.E. Ismail and M. Ohtsu: Constr. Build. Mater Vol. 20 (2006), p.458.

Google Scholar

[6] C.M. Hansson, A. Poursaee and A. Laurent: Cem. Concr. Res Vol. 36 (2006), p. (2098).

Google Scholar

[7] S. E. Hussain, Rasheeduzzafar, A. Al-Musallam and A. S. Al-Gahtani: Cem. Concr. Res Vol. 25 (1995), p.1543.

Google Scholar

[8] H. A. F. Dehwah, M. Maslehuddin and S. A. Austin: Cem. Concr. Compos Vol. 25 (2003), p.17.

Google Scholar

[9] T. P. Cheng, J. T. Lee and W. T. Tsai: Cem. Concr. Res Vol. 20 (1990), p.243.

Google Scholar

[10] E.E. Abd El Aal, S. Abd El Wanees, A. Diab and S.M. Abd El Haleem: Corros. Sci Vol. 51 (2009), p.1611.

DOI: 10.1016/j.corsci.2009.04.006

Google Scholar

[11] O. S. B. Al-Amoudi and M. Maslehuddin: Cem. Concr. Res Vol. 23 (1993), p.139.

Google Scholar

[12] P. Ghods, O.B. Isgor, G. McRae and T. Miller: Cem. Concr. Compos Vol. 31 (2009), p.2.

Google Scholar

[13] H. A. F. Dehwah, M. Maslehuddin and S. A. Austin: Cem. Concr. Compos Vol. 24 (2002), p.17.

Google Scholar

[14] M. G. Pujar, T. Anita, H. Shaikh, R. K. Dayal and H. S. Khatak: J. Mater. Eng. Performance Vol. 16 (2007), p.494.

Google Scholar

[15] ASTM C876-09, Philadelphia, (2009).

Google Scholar

[16] C. Andrade and C. Alonso: Constr. Build. Mater Vol. 10 (1996), p.315.

Google Scholar

[17] R. Luo, Y. B. Cai, C. Y. Wang and X. M. Huang: Cem. Concr. Res Vol. 33 (2003), p.1.

Google Scholar

[18] H. W. Song and V. Saraswathy: J. Hazard. Mater Vol. 138 (2006), p.226.

Google Scholar

[19] A. Cheng, R. Huang, J. K. Wu and C. H. Chen: Mater. Chem. Phys Vol. 93 (2005), p.404.

Google Scholar

[20] D. E. Macphee and H. T. Cao: Mag. Concr. Res Vol. 45 (1993), p.63.

Google Scholar

[21] L. Mammoliti and C. M. Hansson: ACI Mater. J Vol. 102 (2005), p.279.

Google Scholar

[22] F. Pruckner and O. E. Gjørv: Cem. Concr. Res Vol. 34 (2004), p.1209.

Google Scholar

[23] A. Poursaee and C. M. Hansson: Cem. Concr. Res Vol. 39 (2009), p.391.

Google Scholar