[1]
Wheeler OE, Spectrum loading and crack growth. J Basic Eng, Trans ASME, SerD 1972; 94(1): 181-6.
Google Scholar
[2]
Goodman J. Mechanics applied to engineering. London: Longmans Green; 1899.
Google Scholar
[3]
Dowling NE. Mechanical behavior of materials: engineering methods for deformation fracture and fatigue. 2nd ed. Upper Saddle River (NJ): Prentice Hall; (1999).
Google Scholar
[4]
Paris, P.C., Erdogan, F., 1963. A critical analysis of crack propagation laws. ASME Journal of Basic Engineering 85, 528-534.
DOI: 10.1115/1.3656902
Google Scholar
[5]
Walker, K., 1970. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: Effects of Environment and Complex Loading History on Fatigue Life, ASTMSTP 462. American Society for Testing and Materials, Philadelphia, PA, pp.1-14.
DOI: 10.1520/stp32032s
Google Scholar
[6]
Kujawski, D., 2001. A fatigue crack driving force parameter with load ratio effects. International Journal of Fatigue 23, 239-246.
DOI: 10.1016/s0142-1123(01)00158-x
Google Scholar
[7]
Kumar, R., Garg, S.B.L., 1988. Effect of stress ratio on effective stress range ratio and crack growth in 6061-T6 AL-alloy. International Journal of Pressure Vessels and Piping 35(5), 351-361.
DOI: 10.1016/0308-0161(88)90132-9
Google Scholar
[8]
Pippan, R., Bichler, C., Tabernig, B., Weinhandl, H., 2005. Overloads in ductile and brittle materials. Fatigue and Fracture of Engineering Materials and Structures 28, 971-981.
DOI: 10.1111/j.1460-2695.2005.00934.x
Google Scholar
[9]
Wu, X.R., Newman, J.C., Zhao, W., Swain, H.M., Ding, C.F., Phillips, E.P., 1998. Fatigue and Fracture of Engineering Materials and Structures 21(11), 1289-1306.
DOI: 10.1046/j.1460-2695.1998.00080.x
Google Scholar
[10]
Zhao, T., Jiang, Y., 2008. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue 30, 834-849.
DOI: 10.1016/j.ijfatigue.2007.07.005
Google Scholar
[11]
Crooker, T.W., Krause, D.J., 1972. The influence of stress ratio and stress level on fatigue crack growth rates in 140 ksi YS steel. Report of NRL Progress. Naval Research Laboratory, Washington, DC, pp.33-35.
Google Scholar
[12]
Kumar, R., Pandey, A.K., 1990. Investigation of fatigue crack growth under constant amplitude loading. International Journal of Pressure Vessels and Piping 41(2), 179-192.
DOI: 10.1016/0308-0161(90)90040-o
Google Scholar
[13]
Zhang, M. The test methods analysis of threshold stress intensity factor of fatigue crack growth. Transaction of Nan Jing Aeronautics college, 1992, 10: 301-306, (in Chinese).
Google Scholar
[14]
Xu, Z.Y., The Investigation of Fatigue Crack Growth by Mechanics Approach. Modern Mathematics and Mechanics-Ⅷ, 2000, 11: 306-310, (in Chinese).
Google Scholar